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Summary

NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complemen-

tary to and in support of the aerodynamic-propulsion design and test activities. This is especially
true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled

rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations uti-

lizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool

that will help engineers, scientists and CFD practitioners to analyze design problems involving com-

plex geometries in a timely fashion. This goal is accomplished by developing the CAGI: Computer

Aided Grid Interface system. The CAGI system is developed by integrating CAD/CAM (Computer

Aided Design / Computer Aided Manufacturing) geometric system output and / or Initial Graphics

Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipula-

tions and generations associated with grid constructions, and robust grid generation methodologies.

This report describes the development process of the CAGI system.

Introduction

A multitude of techniques and computer codes have been developed for generating computational

grids in arbitrary regions. However, in most of these codes and methodologies, the evaluation of

the geometry input and realization of mapping between physical and computational space allowing

appropriate zonal/block strategies are long, very laborious, and extremely time consuming. Geome-

try-grid generation is considered as the most time and cost critical part in the typical CFD applica-

tion. The development of CAGI was initiated in 1992 to fulfill simulation of complex geometries

encountered in propulsion problems at MSFC in a timely fashion for engineering design. CAGI is

developed in a modular fashion. A self explanatory pictorial view of different modules and their

linkage is provided in Figure 1. The computer languages FORTRAN 77 and C in a Unix environ-

ment are utilized for portability. An X-based interface is provided allowing SGI's GL (Graphics

Library) or X-Graphics access by command line argument. The dynamic allocation of memory
and linked lists on a well-defined data structure is allowed in the CAGI development. The module,

IGES transformer is developed to facilitate all critical geometrical entities. All NASA-IGES geo-

metrical entities have been considered in this development. The Non-Uniform Rational B-Spline

(NURBS) curve/surface/volume representation is selected for the geometric description. The

NURBS offers a control point based parametric representation which is widely utilized for interac-

tive design applications using CAD/CAM systems. An inverse formulation of NURBS is developed

for evaluation of control points associated with the sculptured discretized specification of geometri-

cal entities. The application of these developments in surface grid redistribution, adaptation, remap-

ping and optimization are explored.

The final version of the CAGI system offering an IGES transformer, conversion of the geometric

entities into standard NURBS data structure and various geometry manipulation and generation was

released to NASA/MSFC personnel in April 1996. The IGES transformer module was incorporated

in the grid system GENIE++ and the National C_nid System developed at the Mississippi State Uni-

versity (MSU). The CAGI system has been applied to various grid generation problems based on

the IGES supplied geometric information.

The detailed development of the CAGI is published as a Ph.D Dissertation entitled, "CAGD Tech-

niques in Grid Generation" in December 1996. This dissertation is included under the section on





CAGI development.A user'sguideis alsoincludedin thesamesection. Thisuser'sguidecanbe
electronicallyaccessedfrom thefollowing address:http:llwww.erc.msstate.edulthmstslgrid/cagil
A brief descriptionof thecomputercodeGENIE++is providedin Appendix A-1.
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The objective of this study is to develop the algorithms for static and

dynamic grid generation applicable to complex industrial configurations by

utilizing Computer Aided Geometry Design (CAGD) techniques. The Non-

Uniform Rational BSpline (NURBS) is used as a basis for the geometric defini-

tion and in the development of grid generation schemes. The algorithms

which bridge the gap between CAD/CAM systems, and grid generation systems

have been developed by utilizing the IGES (Initial Graphics Exchange Specifi-

cation) file format, which is the output of the CAD/CAM systems. The IGES

and NASA/IGES prescribed geometric entities have been supported by devel-

oping algorithms which transfer all geometric entities into a common NURBS

data structure. These robust transformation algorithms developed in this

study provide enhancements and generalizations to the existing CAGD tech-

niques pertinent to the grid generation process. The algorithms to interactive-

ly construct NURBS curves, surfaces and volumes widely applicable to CFD

configurations are presented. Projection and inversion techniques applicable

to an interpolated sculptured discretized data set are developed and validated.

The reparameterization algorithms to overcome the influence of NURBS geo-



metric characteristics on the quality of the resulting grids have been devel-

oped. These algorithms have been cast into a computer software CAGI (Com-

puter Aided Grid Interface) to facilitate the geometric modeling and surface

preparations associated with the grid generation process. The CAGI software

provides a menu driven interactive environment based on the FORM8 and GL

graphics libraries. The interactive graphics capabilities of CAGI have been

applied to initiate the surface grid generation associated with trimmed sur-

face entity (IGES entity 144). The NURBS based griding algorithms have

been applied to construct dynamic grids associated with complex solution

adaptive and temporally deforming configurations. Computational examples

demonstrating the success of these algorithms in allowing the treatment of

CAD / IGES files, formulating very concise NURBS control polygon (control

net or control volume) associated with industrial geometries, and addressing

grid redistribution, solution adaptation and dynamically deforming grids are

exercised. The algorithms developed in this study along with efficient comput-

er memory requirement and fast evaluation of NDRBS entities make the

CAGI program very attractive for addressing grid generation needs associated

with complex industrial configurations efficiently and economically.
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CHAPTER I

INTRODUCTION

With the advent of supercomputers and high powered workstations,

computational field simulation has become a more common exercise in modern

analysis, design and manufacturing. This simulation procedure can be di-

vided into three steps: grid generation (pre-processing - generation of a dis-

crete representation of a surface or volume for the solution domain), solution

algorithms (processing - numerical solution of equations of fluid mechanics),

and the scientific visualization ( the post-precessing - interpretation of simu-

lated physical field characteristics). Numerical grid generation is usually the

most labor intensive part of any Computational Field Simulation (CFS) ap-

plication. In fact, at present it can take significantly more labor time to

construct a typical CFS grid than it does to execute the flow simulation code

on the grid or to analyze results. A multitude of techniques for grid generation

with increasing capability has been developed over the past decade [Ref 57,

59, 63 -66]. Among the more notable achievements are elliptic equation based

smoothing procedures [Ref 71-75] and algebraic interpolation schemes [Ref

57, 60-63] for the generation of surface and volume grids. However, 80%-90%

of the grid generation labor time is spent on geometry processing. For a rou-

tine application of CFS, in an industrial environment, the overall response

time for CFS must be reduced considerably. As noted by Ives [Ref 36]:

...... The industrial requirement is for reliable one hour grid generation

1
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turnaround for one-time geometries when run by designers. The system must

include CAD-to-grid links which resolve tolerance issues and produce grids

with a quality good enough for the flow solver. The designer has to feel that

the grid generation processes is under control and is predictable. _

In many of today's industrial applications, most of the geometrical con-

figurations of interest to practical problems are designed using a CAD/CAM

system. As pointed out by the NASA Steering Committee on Surface Modeling

and Grid Generation [Ref 6,35,89], the linkage between the CAD/CAM sys-

tems and the grid generation systems will significantly reduce the overall turn

around time for CFS applications. Unfortunately, there are many different ge-

ometry output formats which force the designer to spend a great deal of time

manipulating geometrical entities in order to achieve a useful sculptured geo-

metrical description for grid generation. In addition, there is a danger of los-

ing the fidelity of the geometry in this process of data transfer between differ-

ent I/O formats [Ref 6,88]. The other issue related to field simulation is the

grid quality. It is well known that the quality of the grid affects the accuracy

of the solution and the computation time [Ref 1, 73]. It may be necessary to

reconstruct the grids for a more satisfactory result after obtaining the first

solution. This reconstruction procedure involves a change of either resolution

(the size of the grids) or the spacing (the distance between grid points) func-

tions. However, this process, especially true for a complex grid, is tedious and

very time consuming. This provides the basic motivation for this study.

To bridge the gap between the CAD/CAM systems and grid generation

systems, it is necessary to establish the communication paths so that the ge-

ometries and grids definodwithin these two systems can be linked with each

other. The Initial Graphics Exchange Specification (IGES) [Ref 35] is a widely
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accepted standard for the geometry exchange. All CAD/CAM systems support

the IGES format as an Input/Output of resulting geometries. Therefore, in

•this study, IGES format has been considered as a standard format for geome-

try specification. The description of IGES format is provided in the following

section. Regarding the grid quality and efficiency in geometry / grid manipu-

lation, it is essential to develop grid generation schemes in conjunction with

well defined analytical / semi-analytical sculptured (parametric) geometric

representation. This parametric geometry definition must_facilitate the gen-

eration./ manipulation / refinement of the high quality geometry (grids). The

Non-Uniform Rational BSpline (NURBS) [Ref 18,43-47] has been selected as

the standard _for parametric geometric representation in this stud_ The at-

tributes and characteristics of the NURBS are provided in the following sec-

tion. Hence, in this study, the IGES file I/O format and the NURBS represen-

tation are utilized as the standard for CAD/CAM system output and geometric

definition respectively.

The IGES format was defined by researchers and engineers from indus-

try, government organization and academics in the late'!1970's and early

1980's. This format is intended to describe every aspect of a geometric data set

(such as the coordinates of the data set, what color to be plotted and even the

line width to be plotted ...), and is designed to be the national standard of In-

put/Output format for CAD/CAM systems. There are five sections in each

IGES file, namely, the Start section, Global section, Directory entry section,

Parameter data section and the Terminate section. All entities described in an

IGES file are labeled with an integer number (for example, a circular arc is

labeled with 100) and classified into four classes. These classes are _curve and
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surface geometry entities', "constructive solid geometry entities', "annotation

entities" and "structure entities'. Among these four classes, the widely uti-

lized class for CFS engineers and designers is the acurve and surface geometry

entities'. These entities are labeled from 100 - 199. An example of an IGES

file describing the definition of a sphere is listed in Appendix ,_ In this IGES

example, the Start section includes the human-readable prologue to the file.

All records in this section shall have the letter _S _ in column 73 and a se-

quence number in columns 74 through 80. The Global section of this file con-

rains the infohnation describing the preprocessor and information needed by

the postprocessor to handle the file. All records in this Global section shall

contain the letter "G = in column 73 and a sequence number in columns 74

through 80. Many important parameters are defined in this section, two of

which are the characters of parameter delimiter and record delimiter. The de-

fault characters are the "comma" and "semicolon" respectively. The Directory

entry section has one directory entry for each entity in the file. This directory

entry for each entity is fixed in size and contain_ twenty fields of eight charac-

ters each, spread across two consecutive eighty character lines. All records in

this section contains the letter _D" in column 73 followed by a 7 digit sequence

number. For this example, the IGES file describes a sphere defined by a

NURBS surface; hence, th e entity number 128 is shown in the first and elev-

enth fields of this directory entry. The Parameter data section contains the

parameter data associated with each entity defined in the Directory entry sec-

tion, For this example, the NURBS information, such as the control vertices,

the knot vector and the we/_hts, are defined in this section. The Terminate

sectionis the lastsection. It contains a character _T' in column 73. There is

only one lineof the Terminate sectionin an IGES file.This sectiondescribes
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the number of lines used in the Start section, Global section, D/rectory section

and Parameter data section in the IGES file.

As aforementioned, the IGES file is an attempt to represent every as-

pect of geometry data, and thus its documentation is long and difficult to com-

prehend. Utilization of the IGES data file requires expert knowledge of the

data format and the interpretation associated with the geometry description

of respective entities. Hence, even though this format has been defined since

1980o_t has not been widely used by the grid generation community. To en-

hanco the utilization of an IGES file and to expedite the entire grid generation

process, scientists at various NASA centers (NASA Ames, NASA Langley and

NASA Lewis) have formed an IGES committee. This committee, referred to as

the NASA IGES committee, selected several commonly used entities in CFS

simulation as a group. This group of IGES entities is known as the NASA-

IGES, NASA-IGES Provides a common standard for geometric description

between the CAD/CAM and the CFS community. All these efforts simply show

the importance of the IGES format in creating quick and efficient results for

the geometry transformation.

In view of these efforts, IGES has been selected as the CAD/CAM sys-

tem for geometry Input/Output in this study. The algorithms: to interpret,

analyze and manipulate the IGES geometric entities by utilizing the NURBS

as a standard geometric representation have been developed in this work.

NURBS

NURBS stands for Non-Uniform Rational BSpline and is a parametric

form consisting of the control polygons, knot vectors, orders and weights to

represent the geometric entity accurately. If all the weights of a NURBS enti-

ty are equal to one, then it is called a Non-Rational BSpline (or simply
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BSpline). The BSpline was developed in the 1970's and 80's by Carl de Boor,

M. G. Cox and J. Schoenberg. In 1973, R. Riesenfeld presented" the paper

entitled _Applications of BSpline approximation to geometric problems of com-

puter-aided design _ which was the first application of the BSpline applied to

CAD. The properties and applications of NURBS were initialized and exten-

sively developed during the 1980s. The first commercial product which used

the NURBS to represent the geometry came from the SDRC (Structural Dy-

namics Research_Corp.) in 1983. The Boeing company proposed the NURBS

as an IGES standard in 1981, and now the NURBS curve and NURBS surface

have been adapted as the IGES geometric entities 126 and 128.

Recently, the IGES entities 126 and 128 have become increasingly pop°

ular in geometric definition. This popularity is due to various characteristics

of the NURBS, especially the shape preserving property. Many commonly

used curve and surface definitions can be analytically represented by NURBS.

These commonly used geometric entities include the circular arc, conic arc,

line, cubic spline curve, cylinder, ruled surface, s_face of revolution, paramet-

ric surface ... and so on. In addition to this shape preserving property, NURBS

has many other powerful features, such as the convex hull, local control, varia-

tion r]imlniR_ and _e invariance. The convex hull property ensures that

the NURBS curve (surface or volume) will lie entirely inside its associated

control polygon (control net or control volume) [Ref 23-25,34]. The local con-

trol property facilitates the l'o_d modification of the geometry without altering

the entire geometric shape. This attractive property makes it possible to re-

fine/reconstruct the desiredporti0n of a geometry locally. The variation di-

rnlni_hlng property, taking a _S curve as an example, is defined such

that if a straight line intersects the NURBS control polygon of a planar
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NURBS curve k times, then it can intersect the NURBS curve at most k times.

This property ensures that the NURBS is always convex whenever its control

polygon is convex, and the NURBS curve can be convex even when its control

polygon is not convex. Furthermore, if a NURBS curve has a point of inflec-

tion, then its associated control polygon must have at least one point of inflec-

tion [Ref 23,34]. This property is useful in predicting the shape of a NURBS

representation.

Also, the NURBS geometry tool kits which include the knot insertion,

degree elevation and splitting algorithms, make NURBS useful in their own

right. The knot insertion algorithm is used to increase the associated knot

vector without changing the original 1VURBS shape. After increasing the

number of knot values in a knot vector, the designer has more freedom to

modify the associated NURBS curve (surface or volume). Similar to the knot

insertion algorithm, the degree elevation provides the flexibility to modify the

NURBS entity by increasing the associated degree without changing the origi-

nal geometric shape. These two functions are important, fundamental and

unique to the NURBS representation. The splitting algorithm allows the de-

signer to "cut _ a NURBS entity into two different NURBS entities.

All these geometric properties make the NURBS stable for representing

complicated data sets and also very attractive to the designers and engineers

in CFS and CAD/CAM. In fact, because of these attractive properties, many

efforts have been proposed utilizing the NURBS as the standard and geomet-

ric representation. For example, after presenting the the NASA-IGES for-

mat, the NASA IGES committee further proposed the N/NO _A IGES

]_JRBS ONLY) standard [Ref 6,35]. The scientists and engineers from the

Naval Surface Warface Center and Boeing company combined their efforts
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and designed the software package _DT_.NURBS _ [Ref 21]. This software

package utilizes NURBS definitions as a standard data structure for geomet-

ric entities and provides evaluations and manipulations of NURBS entities. A

general purpose grid generation package uNGP" [Ref 29,71] developed at Mis-

sissippi State University / NSF Engineering Research Center also utilizes the

NURBS as the standard database. Widely used CAD/CAM packages like "PA-

TRAN _, _I-DEAS _ and _ICEM CFD _ all claim their products support the

NURBS geometric database. Besides the IGES format, many national and in-

ternational standards, such as the STEP and PHIGS, recognize NURBS as a

standard for geometric design. Even in applications of computer graphics,

NURBS is used to model the complicated objects. In addition, NURBS has

even been implemented and supported as hardware functions. For example,

the GL (Graphic Library) [Ref39] in Silicon Graphics platform supports hard-

ware functions such as _nurbscurve _, _nurbssurface', _nurbsc" and _nurbss _, ...

and so on. These functions account for the hardware implementation of

NURBS curves and surfaces definitions. Similar NURBS functions such as

the _gluGet_urbsProperty', _gluNurbsCallback _, _gluNurbsCurve _ and "glu-

NurbsSurface _ are supported by OpenGL [Ref 39] - another popular graphics

library. Even in virtualreality applications, NURBS has been used for model-

ing scones; In fact, the NURBS representation is becoming the _defacto" stan-

dard for the geometry description :in most modem CAD/CAM, grid generation

systems and computer g_phics. '

The application oi'NURBS to grid generation was first presented by

Yoon [Ref 81] in 1991. However,in his study, most of the concontration was

placed on the BSpline (by considering the case of all weights to be one). Fol-

lowing Yoon's work, Yang utilize_i NURBS for the application of grid adapta-
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tion [Ref 83] in 1993. Shih applied the NURBS for data interpolation in the

turbomachinery [Ref 53] in 1994, Crai_ used it for re--splining the surface

grids for a CFS analysis of a complete aircraft [Ref 11,67], and Boyalakuntla

used it for simulation of the temporally deforming geometries [Ref 13]. These

researchers have contributed in utilizing the NURBS interpolation and evalu-

ation routines developed under this study in the area of numerical grid gen-

eration. However, the NURBS has been used only as an interpolation tool by

these researchers. As a matter of fact, those researchers 0nly utilize the

BSpline definition instead of NURBS. In this study, the detailed analysis and

algorithms to utilize NURBS in grid generation are presented.

As is mentioned, the commnnlcatious between the CAD/CAM and grid

generations are crucial. In order to communicate the geometry from grid gen-

eration to CAD/CAM, the grid generation system must have the ability to read

in / output to IGES file. The transform of those geometric entities, which are

defined in the IGES standard, to discrete grid formats (such as PLOT3D for-

mat) has been done in [Ref86, 87]. As noted, these discrete grids formats have

several drawbacks. They will lose the parametric definition, and the grid is

difficult to re-evaluate or change the spacing. Also, this discrete grid format

can not communicate to a CAD/CAM system anymore. However, many of the

geometric representations can be transformed to NURBS analytically. And

the NURBS can be used in grid generation to model various geometric defini-

tions, it is possible to communicate with the CAD/CAM system through the

IGES entities 126 and 128 which are the NURBS curve and NURBS surface.

Hence, the NURBS representation provides the linkage between the grid gen-

eration and CAD/CAM system.
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This study concentrates on the development of generalized algorithms

so that the NURBS can be fully utilized in grid generation system, and thus,

eliminate the commtmication hurdle. The objectives and the organization of

this study follows.

Ob_iective and Organization

In this study, the objectives are to develop the algorithms to bridge the

gap between CAD/CAM systems and numerical grid generation systems. The

CAGD techniques have been utilized in CAD/CAM systems for decades. Many

of them are well documented in the related literature. Several existing algo-

rithms have been adopted in this research. These basic and fundamental al-

gorithms include the (NURBS) knot insertion, degree elevation, splitting /

joining algorithms [Ref 8,42~47, 76,77] and the evaluation of the BSpline ba-

sis functions [Ref 18]. Other existing algorithms, such as the data reduction

routines [Ref 38] and the FORM Library [Ref 39] which are available in the

public domain, have also been utilized in this study.

This work is carried out by first including the development of algo-

rithms for transforming Non,NURBS entities encountered in standard IGES

format to NURBS definitions and then following the development of algo-

rithms for _y and efficient _S manipulation. The transformation algo-

Ntt_s presented in tl_ study pr_de the enhancements and generalizations

of those described in CAGD literature [Ref 7,42,431, For example, the trails-

formation algorithm associated with a circular arc to a NURBS curve is en-

hanced to facilitate an arbitrary arc with different sector angle (the difference

of ending angle and s_ angle) without extra computation of using the

knot insertion algorithm [Ref 45]. The transformation of the conic arc to a

NURBS curve representation is generalized by solving an implicit equation
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which provides more information necessary for grid generation process. This

information also includes the types of the arc, the orientations, the sector

angle and the semi-msjor and semi-minor axis. Also, the transformation al-

gorithm developed for the surface of revolution is not limited to the full revolu-

tion which is the only case described in CAGD literature.

In addition to the transformation algorithms, the NURBS generation

algorithms are also developed. In the CAD/CAM and CAGD area, the NURBS

is only Used for generating the curves and surfaces. However, the NURBS

curve and surface algorithms have been extended to the volume generation in

view of the application to grid generation. These new algorithms can be ap-

plied for various 3D NURBS volume generation algorithms tailored for many

CFS related configurations. Also, the modeling techniques for the superellip-

tic arc and cascading surface by NURBS curve and surface presented in this

study have not been discussed before in the literature. These algorithms can

facilitate the use of CAD/CAM data for CFS analysis. The most commonly

used NURBS evaluation algorithm discussed in related literature is the _de

Boor _ method [Ref 23, 34]. In this study, a new evaluation algorithm for

NURBS representations (curve, surface and volume) is deveI0ped. This new

algorithm provides a competitive alternative to the de Boor algorithm in terms

of the memory used and the computational time. Since NURBS is a paramet-

ric representation, the determination of proper parametric values for the de-

sired (smooth) grids on NURBS entities is a difficult issue. The new repara-

meterization algorithms developed in this study provide an efficient approach

to solve this difficulty.

The grid adaptation is frequently used in many CFS applications. It

provides the ability for obtaining more accurate solutions. Since the repara-
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meterization algorithms can be used for precise grid distribution control on

the NIfRBS entities, this reparameterization algorithm is then used to en-

hance the adaptation algorithm developed by Yang [Ref 83 -85] in this study.

The organization of this dissertation is as follows. First, the back-

ground and the motivation of this study are introduced in Chapter One. The

NURBS descriptions along with the algorithms for transforming curves and

surfaces to NURBS representations are described in Chapter Two. The algo-

rithms for generating 3D surface and volume grids by various approaches uti-

lizing NURBS control net and control volume are presented in Chapter Three.

The general BSpline interpolation algorithm along with the projection and in-

version methods follow. The NURBS re-parameterization algorithms are de-

scribed in Chapter Four. These algorithms are designed to maintain the dis-

continuity of the NURBS entities and accomplish a better grid distribution on

the physical NURBS entities. A new algorithm developed for a fast and effi-

cient NURBS evaluation is also included. The applications of NURBS in dy-

namic grid generation are demonstrated in Chapter Five. These applications

include the grid adaptation and temporally deforming geometry. In this chap-

ter, the NURBS _local control s property and the re-parameterization algo-

rithm are fully demonstrated. The grids are modeled with a concise _S

control net (or control volume), and computational examples are included.

The overview of the computer software package UAGI is presented in Chapter

Six. The modules of CAGI and the associated functionalities are introduced.

There are many packages which claim the capability of reading the IGES file

for numerical grid generation. However, very few of them can handle two com-

plicated and difficult entities-- the bounded surface (entity 143) and the

trimmed surface (entity 144) for "structured _ grid topology. The approaches
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and strategies of handling these two entities and the examples are shown in

Chapter Seven. The summary and conclusions are listed in the last chapter.



CHAPTER II

NURBS AND THE TRANSFORMING ALGORITHMS

NURBS Formulation

The definitions of NURBS curve, surface and volume are presented as

follows:

A NURBS Curve of order k is defined as:

W l d, N_(t)

C(t) - l=o (2.1)

W, N(/)
1=0

where the d/ i=O,..,n denotes the deBoor control polygon and the W_ are the

weights associated with each control point. The N_(t) is the normalized

BSpline basis function of order k and is defined ever a knot vector T = _q i= 0,

..., n+k by the recurrence relations as shown in equation (2.2).

Nk(t) = (t- T l ).N'_-x(t) (Tt+ k - t )Ni_+_(t)- + T - T,
(2.2)

1 if T_ st <T,+_
N_(t) {= 0 otherwise

Throughout this study, it is assumed that the knot vector has the form T = [0,

..., O, _1_,..., Tn, 1, ..., 1} with the multiplicity k for the knot value 0 and I on

both ends of the knot vector. If the knot vectors do not match this format, the

knot insertion [Ref 8] technique must be used to achieve the multiplicity of k

14
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on the ends of the knot vector, and if the end knot values are not 0 and 1, the

knot vector must be normalized by the last knot value to match this format.

Because shiiting and scaling (normalizing) the knot value will not alter the

shape of geometry, the basis function list in equation (2.2) is defined as _Nor-

malization _ basis function.

The NURBS surface is the extension of the curve from 1D to the 2D ten-

sot product parametric surface and is shown as equation (2.3).

_. _ W_j dtj N_I(s) N_2(t)

i _ojffio (2.3)S(s, t) =

tffiOj=O

Where d 0. denotes the 3D control net and V_t/are the weights associated with

each control point. The N/kl(s), N_2(t) denote the normalized BSpline basis

functions of order kl andk2 over the two knot vector TI=_ i=O,..,m+kl and

T2=Tj j=O,..,n+k2 in the I and J directions, respectively. The definition of the

BSpline basis functions of NURBS surface is exactly the same as for the curve

shown in equation (2.2).

The formula for 3D NURBS volume is defined analogous to NURBS

surface and is a 3D tensor product form written as:

v(_t,u) = _-oj-o!-o (2.4)

l-oj-ol-o

The d/j t form the 3D control volume, and the Wi j k are weights

associated with each control peint. The _l(s), N_2(t) and N_S(u) are the
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normalized BSpline basis functions of order k], _ and _ over the two knot

vectors TI=_ i=O,..,m+kl, T2=Ty j=O,..,n+k2 and T3=_ lffiO,..,p+k3 in the I, J

and L directions (i.e., the s,t,u directions), respectively.

Transforming ProcedurcR

Transforming the Non-NURBS geometric curves and surfaces to

NURBS definition is the main topic of this section. To model a NURBS entity,

according to the equations (2.1) - (2.4), one should define the control polygons

(or control net / volume), weights, knot vector(s) and the order(s).

CAD/CAM systems and grid generation systems often utilize different

formats which makes transfer of information between systems difficult. The

procedure presented in this section has been developed to facilitate this com-

munication. A geometric entity defined in a CAD system can be represented

in many ways (for example, cubic parametric spline surface, ruled surface,

surface of revolution or extruded surface ...etc.), while still conforming to the

IGES standard. It is well known that most geoinetric definition can be analyt-

ically transformed to a NURBS representation. The transformations of most

widely used entities to NURBS are described by Piegl [Ref 43,44,46]. Howev-

er, there are many practical issues which are not covered in the transforming

procedures published in those literature. For example, the IGES representa-

tion of the implicit conic arc, an important entity, is not contained in those ref-

erences. The transforming algorithm for a general circular arc (a circular arc

with arbitrary starting and ending points) is also missing from those refer-

ence. Another problem is the available literature may not provide sufficient

detail. For example, procedures for transforming a surface of revolution into a

NURBS are provided only for a 3600 revolution, but many grid generation ap-

plications require a specified range, such as 600. The procedures for trans-
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forming a ruled surface to a NURBS are only covered for sequence connection,

but the IGES format defines two ways of connections [Ref 35]. Also, several

transforming algorithms are never discussed in any of the literature. For ex-

ample, the Transfinite Interpolation (TFI) for a NURBS volume and the mod-

eling of the super--ellipse as the NURBS curve. Hence, the following sections

provide enhancements and generalizations to existing transformations devel-

oped to meet needs arising from the grid generation process for complex geom-

etries defined in a CAD/CAM system.

Transfom the Curve Entities to the NURBS Representations

The algorithms of transforming various curve definitions to NURBS

curve representation follows. There are six different cases discussed ifl this

section.

Transfom Straight Line (Entity_ 110) to NURBS Curve

The first (and the easiest) entity to transform is the straight line (entity

110). In the IGES documentation, a straight line is defined as the connection

between two 3D data points. Therefore, with regard to NURBS, the definition

of the line uses the original two points as the two control points (d). Then, set

order (k) equal to 2, setweights (W) all equal to 1, and set the knot vector as

(0,0,1,1). Since there are only two control points, the n is equal to 1. One may

argue the need for using NURBS to represent a straight line, because the

NURBS form needs extra storage than the traditional straight line definition.

This is why even the NASA-IGES C0_ttee feels the straight line definition

could remain unchanged. However, there are two reasons to transform this

entity to NURBS form. First, transforming all entities to NURBS form keeps

a simplicity of the database. Second, ffthis straight line is one of the constitu-
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ent entities of the composite curve (refer the _Pransform composite curve to

NURBS curve" for detail), then representing that composite curve with

NURBS form requires that the straight line be represented in NURBS defini-

tion so that one can perform knot insertion or degree elevation to join all con-

stituent curve entities into one composite NURBS curve.

Transform Circular Arc (]_,ntity 100) to NURBS Curve

A circular arc (entity 100) as defined in the IGES standard is repre-

sented by a center point, starting point and ending point within a given

constant Z plane. The two end points and the center point form an arbitrary

sector angle which does not necessarily start from zero. It has been shown

that any circular arc with sector angle less than or equal to 90 ° can be repre-

sented by NURBS [Ref 42,45]. The basic control polygon for this NURBS rep-

resentation is shown in Figure 2.1.

E S

Figure 2.1 The basic control triangle for a circular arc.

In Figure 2.1, C is the center point, S is the starting point and E is the

ending point. The sector angle SCE (9) is less than or equal to 90 °. The two

tangent lines SD and El) intersect at D. The order of this control polygon is

three, with the control points S, D, E (hence, the n is 2) and the weights are 1,

ces(9/2) and I respectively. The associated knot vector is (0,0,0,1,1,1). A circu-

lar arc with sector angle greater than 90 ° and less than or equal to 180 ° can be



19

represented by two arcs with one half of the original sector angle. For each of

these two sections the previous procedure can be used to evaluate the corre-

sponding control polygon. A 180 ° circular arc represented by two control poly-

gons is illustrated in Figure 2.2.

leftcontrol

polygon for

half circle

E C

I

S

right control

polygon for

half circle

Figure 2.2 The NITRBS control polygon for a semi-circle.

These two controlpolygons can be combined and the common point M

can be eliminated. The resulting NURBS information is settingthe control

polygon toSiMJE (hence,the n is4),the knot vectorto (0, 0,0, 1/2,1/2,1,1,1)

and the weights to (1.,cos(e/n),1.,cos(e/n),1.):A similar procedure can be

used for circular arcs between 180 ° and 270 ° (with n equal to 6) resulting in a

final knot vector of(0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1,1,1) and weights (1., cos(0/n), 1.,

cos(e/n), 1.cos(e/n), 1.), and a knot vector of (0, 0, 0, .25, .25, .5, .5, .75 , .75

,1,1,1) and weights (1., cos(e/n), 1., cos(e/n), 1, cos(0/n), 1.cos({}/n), 1.) for arcs

between 270 ° and 360 ° for n equal to 8. These four cases are shown in Figure

2.3.

This approach handles all possible circular arcs with no extra computa-

tion (such as knot insertion) involved. Furthermore, .the parameterization

(distribution on the curves, see detail in Chapter four) is good for all cases.
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Figure 2.3 Arbitrary circular arcs with the NURBS control polygons.

Transform Conic Arc (Entity 104) to NURBS Curv0

The transforming procedure for conic arc was discussed in [Ref 42,44],

where they described the case of 3 given control points and changing the

weight (conic shape factor) to produce a different family of conic arcs (elliptic,

hyperbolic or parabolic arc). However, that case is complete different than the

one defined in IGES format. The conic arc defined in ICES is represented by

an implicit form Ax 2 + Bxy + Cy 2 + Dx + Ey + F = O, with starting point S and

ending point T supplied (counterclockwise). Tl_e transforming procedure for a

basic conic arc is illustrated in Figure 2.4. In this figure m is the middle point

of line TS.

Figure 2.4 Basic NURBS control polygon for a conic arc.

Since the two end points are known, the two slopes of the tangent lines

at the end points can be obtained. The equations describing these two tangent



lines can be formed and the intersection point N can be determined.

accomplished as follows:
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This is

Differentiate the implicit form of the conic equation to obtain 2Ax + By

+ Bxy" + 2Cyy' +D + Ey'=O. Solving this equation for the derivative yields:

y' = (2Ax + By + D ) / (-2Cy- Bx - E) (2.5)

Substitution of the coordinates of the two end points S and T into equa-

tion (2.5) yields the two desired straight lines. The shoulder point h can then

be obtained by solving for the intersection of the line Nm and the given implic-

it equation. The control triangle is then defined by the polygon SNT (hence,

the n is 2 for this case) with weights of(l, (mh)/(hN), 1). The order can be set

to 3 and knot vector is defined in a manner analogous to the circular arc. As

long as this basic control triangle can be found, the procedure used for the cir-

cular arc with the sector angle greater than 90 ° can be applied to conic arc by

simply combining the different control triangles together to form the final con-

trol polygon and by setting the proper knot vector. The definition of sector

angle 9 for the conic arc is only applied to the elliptic arc,.for the parabolic or

hyperbolic arcs, three controlpoints are sufficient to form the control polygon.

Hence, for parabolic or hyperbolic arc, the knot vector is always (0., 0., 0., 1.0,

1.0, 1.0) with n equal to 2. Figure 2.5 shows different conic arcs represented

by the NURBS using this algorithm. From lei_ to right, (I): Elliptic arc with

equation 2x2+4xy+5y2-4x-22y+TffiO, form by two NURBS control polygons.

(11): parabolic arc with equation 4_- 4xy + y2_ 2x - 14y + 7 = 0, (HI). Hyper-

bolic arc with equation 2x _ + 4/_xy - 2y2-16-0.
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:Figure 2.5 NURBS control polygons represent different conic arc.

Transform Parametric Curve (Enti _ty 112) to NURBS Curv_

The cubic parametric curve defined in IGES format is a sequence of

parametric polynomial segments. More precisely, it is composed ofN (N_> 1)

pieces of cubic parametric segments as illustrated in Figure 2.6.

uffiT(2) uffiT(4) j'6

P2 _ /ufT(6)

u=T(1) u=T(3) u=T(5)

Figure 2.6 The definition of parametric curve in IGES format.

In Figure 2.6, the T(i), i=1, .., N+I are the breakpoint. For this case,

N=5, hence, there are 5 cube parametric segments constitute the final curve.

For each parametric curve, it is defined as

C(u) = a + b t + c t 2 + d t 3 T(i) _ u _ T(i+l) and t = u - T(i) (2.6)

It has been proven [Ref23,24,34] that the cubic Bezier curve is a special

case of a BSpline curve with knots vector of (0, 0, 0, 0, 1, 1, 1, 1) (no interior

knot value). Also, the BSpline curve is a special case of NURBS curve with all

weights equal to 1. The mathematical transformation from parametric cubic

spline curve in IGES definition to NURBS is accomplished as follows:
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The matrix form of the each simple cubic parametric curve, according to

equation (2.6), can be expressed as C(t) = [1 t t2t3] Ll_ [ab c d]Twhere I4r_ is

the identity matrix and [ a b c d]Tis the transposed matrix containing the coef-

ficients of the cubic curve. The matrix form of the cubic Bezier curve is ex-

pressed as C(t) ffi [1 t t 2 t 3] B4z4 [bo bl b2 b3] T. The B4_t is the cubic Bezier

matrix and /bo bl b2 b3]Tis the transpose matrix containing the Bezier con-

trol polygon. The strategy is to first transform the cubic parametric curve to

Bezier form, since a Bezier curve can be treated as the special case of a

NURBS curve. Each segment of parametric spline curve is transformed to a

Bezier curve by finding the assodated Bezier control polygon. This is done by

setting the the two matrix equations to be equal

Bezier= [lt t 2 t 8] -6 _3 b2
3

1 0 bi

= Cubic curve = [1 t t 2 t 3] 0 1 ci (2.7)

00

Solving the equation (2.7) for the Bezier control polygon. Since the cubic para-

metric spline defined in IGES is composed of N pieces of cubic curves, the

range of parametric value t for each piece is not the same as for the Bezier

curve. Hence, a re--parameterization of the cubic parametric curve is neces-

sary. For each piece of cubic curve, the coefficients [a/ b/c/d/] T can be ob-

tained from the IGES file, therefore, the final equation to solve (for each seg-

ment) is
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(2.8)

where h = T(i+l) - T(i) and T(i) is the break value defined in the IGES file.

After all the Bezier control polygons have been obtained, one can join them

together and set the multiplicity of joint knot value equal to 3 to form the final

Bsplin e curve. For example, if two cubic Bezier control polygon are obtained,

the final knot vector will be set as (0, 0, 0, 0, 0.5, 0.5, 0.5, 1, 1, 1, 1) and the

final curve would be C Ocontinuous with order equal to 4 and all weights equal

to 1. The knot removal algorithm described in [Ref 5,76] can be applied to

eliminate the redundant knot and reduce the number of control points. Figure

2.7 (not applying the knot removal algorithm) demonstrates this approach.

Figure 2.7 BSpline control polygon for parametric curve with 2 segments.

Transform Composite Curve (Entity 102) to NURBS Curv0

A composite curve(entity 102) is defined as a curve entity consisting of

lists of constituent curves. The constituent curve can be any parameterization

curve except another composite curve. And this entity is a directed curve,

which means the direction of the composite curve is induced by the direction of

the constituent curves in the following manner. The start point for the corn-
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posite curve is the start point of the first curve entity appearing in the defin-

ing list, and the terminate point for the composite curve is the terminate point

of the last constituent curve appearing in the defining list. Within the defin-

ing list itself, the terminate point of each constituent curve entity has the

same coordinates as the start point of the succeeding curve entity. It is quite

difficult to represent the composite curve precisely without transforming all

the constituent curves to the NURBS form. After transforming all curve enti-

ties (like straight lines, circular arcs, conic arcs, parametrid curves and ratio-

nal BSpline curves), the _IRBS Joining _ algorithm for all the constituent

NURBS curves is performed to form the NURBS representation for the com-

posite curve. The procedure is illustrated as follows:

Suppose two constituent curves C1 and C2 (already transformed to

NURBS definition) form a composite curve. Then the first step is to perform

the degree of elevation [Ref 14] of the lower degree curve so that the curves

can have the same order. The second step is to adjust the knot vector of the

second curve C2 so that the first knot value of the second curve can have the

same value as the last knot value of the first curve. Shifting the knot vector

will not change the original NURBS curve because the basis function is a

_normalized _ basis function. The third step is to build up the final knot vector

by joining the two knot vectors into one knot vector and set that knot value at

the joint point to have the multiplicity equal to (order - 1). For example, if the

first knot vector is [0,0,0,1,1,1] and the second knot vector is [2,2,2,3,3,3], ad-

just the second knot vector by s_-I to each value. Thus, the second knot

vector becomes [1,1,1,2,2,2]. Suppose the order ofthese two curves are 3, then,

the final knot vector should be [0,0,0,1,1,2,2,2] (one may notice the interior

knot 1 has multiplicity of (order -1) = 2). The fourth step is to match the
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weights by timing the ratio of (the last weight of the first curve/the first

weight of the second curve) to all the weights of the second curve so that the

weight at the joint point for the two curve are the same. The last step is to

build up the final control polygon and weights by throwing the first control

point and weight of the second curve away and jointing the others as one con-

trol polygon and one weights vector. After these procedures have been applied

to all the constituent curves, a composite NURBS curve should be formed.

One more procedure that may apply to rids final curve is to perform the knot

removal to remove the redundant knot vector [Ref 5,76]. Figure 2.8 shows this

algorithm for transforming the composite curve consisting of, from right to

le_, one straight line, one circular arc, one straight line, one ellipse arc and a

straight line.

Figure 2.8 NURBS control polygon for a composite curve.

Transform Su_uerelli_nse to NURBS Curve

A superelliptic arc can be described as the equation (2.9)

(2.9)

where a is the semi-major and b is the semi-minor axes of the superellipse.

Special cases of the equation (2.9) include a circle (with a = b, and T/= 2), an

ellipse (with a # b, and _ = 2) and a rectangle (with a # b, and T/= co).
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The definition of superellipse is not included in IGES format, however,

it is a commonly used geometric description. An example of this is the model-

ing of a transition duct used for the test of a single-engine nozzle [Ref 41,48].

The transition duct was designed by using a sequence of constant-area, super-

elliptic cross sections according to equation (2.9). In most of the literature, the

process of obtaining the exponent of the superellipse T/was described as solv-

ing the implicit function relating the quantities a, b and _ to Acs of equation

(2.10).

/"(1/_/) 9-

A_ = _ (2/_)(4ab) (2.10)

In this study, the transforming of this superellipse to NURBS curve is

presented in a more straightforward way as follows.

This transforming approach is a combination of the circular arc and the conic

arc algorithms.

Figure 2.9 Illustration of the _S control points for a superellipse.

Consider a superellipse with semi-major a and semi'-minor b in the

first quadrant shown in Figure 2.9. This arc starts at the point (a,O) and ends

at the point (O,b). Two tangent lines intersect at the point (a,b). Similar to the

algorithm of circular arc, these three points can be used as the NURBS control

polygon while setting the order to be 3 with knot vector (0., 0., 0., 1., 1., 1.).

The weights at the starting and ending control polygon can be set to 1.0. The
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only problem left is determining the weight at the middle point D of the control

polygon. This is done similar to the algorithm of the conic arc. Construct the

straight line OD and let this line intersect with the line SE and the superellip-

tic arc at the points of m and h. The weight at point D is then set as the ratio

of (hm / hD).

This approach is self-explanatory. When the exponent of the superel-

lipse _ increases, the arc is changing from a circular arc to a rectangular arc,

this means that point h is approaching to the control point D. Also, the dis-

tance of hD is decreasing and as a result the weight at point D is increased.

This situation matches the NURBS theory -- a NURBS curve is pulled to-

wards to the control point when the weight of this control point increased. The

mathematic verification can also be done by comparing the h point with the

shoulder point evaluation from NURBS representation. Since the variables

(a, b and r/) of superellipse are all given, the h can be solved from the intersec-

tion of the line OD and the arc. On the other hand, after the entire NURBS

representation is set up for this superellipse, tl_e shoulder point h can also be

evaluated with the parametric value t = 0.5. Comparing to the locations of

these h's, one can find out that the relative deviation is as small as 1.0e-9.

Table 2.1 shews the selected values of the exponent _ of the superellipse and

the corresponding weights valuea



Table 2.1 The relationship between exponent t/and weights.
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From Table 2.1, one can also notice that in the case of circular arc or the

elliptic arc (when r] = 2), the corresponding weight (for the sector angle equal to

900) is the same as cos(900/2.0) which has been discussed in circular/elliptic

are section.

Transform the surface entities to the NURBS representation

The algorithms of transforming various surface definitions to NURBS

surface representation follows. There are four different cases discussed in this

section.

Transform Cubic Parametric Spline Surface (Entity_ 114) to NURBS Surfac_

The cubic parametric spline surface defined by IGES is composed of M

by N cubic patches as illustrated in Figure 2.10.

uf TU(1) uf TU(M+ I)
vf TV(N+ I)

3,1 u=TU(M+I)
u=TU(1) bvfTV(1)
v=TV(1)

Figure 2.10 Illustration of cubic parametric surface defined in IGES.

The definition of this surface is expressed as:

8(u,v) = a + bs + cs _ + ds 3 + t (e + fs + gs _ +hs 3) +

t 2 (k + ls + ms2+ ns 3) + t3(o + ps + qs 2 + rs 3) (2.11)
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Two breakpoint vectors are TU(i),...,TU(M+I) and TV(i),...,TV(N+I) where

TU(i) __ u __ TU(i+I) i= 1, ..., M and s = u - TU(i) and TV(i) __ u __ TV(i+I)

i= 1,., N and t = v - TV(i).

The strategy for transforming this entity to a BSpline tensor product

surface is similar to the one for the cubic parametric spline. The matrix form

for the parametric cubic spline surface, according to equation (2.11), can be ex-

pressed in a matrix form as shown in equation (2.12).

iektltfl

S(u ,v)= [1 s s 2 s s] g m t 2 (2.12)

h n

While the matrix form of the Bezier surface with Bezier control points B/j can

be expressed as equation (2.13).

HS(u,v)= [1 u u 2 u 8]A/J B/j CU v2 (2.13)

where

The coefficients of this cubic parametric surface are given from an IGES

file, therefore, the variables of equation (2.12) are all known, and the only un-

known for equation (2..13)is matr_ term of Bezier control points B/j. Hence,

the Bezier control points for each bi-cubic patch are obtained by setting equa-

tion (2.12) be equal to equation (2.13) and solving the matrix equation (2.14)

with necessary re--parameterization.
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?

(2.14)
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where t1 I0

P=g[3 233
t99 3eQ= 03

00

hl _TU(i + I)...TU(i)

h2 =TV(j+I)-TVO')

After all Bezier control patches B/j are obtained, one can join each sub

patch to form the final Bspline surface by setting the multiplicity of the knot

value at the joint place to 3 in both directions (I and J). The advantage for

using this algorithm is that there is no approximation or interpolation work

involved. Therefore, the final BspHne surface represents the same geometry as

the original parametric cubic spHne surface defined in IGES the file. An IGES

file generated by a CAD/CAM package is manipulated to demonstrate this al-

gorithm. This IGES file, representing the nacelle of an engine, contains one

cubic parametric surface with 34 by 24 sub patches. The final transformed

BSpline surface ends up with 103 by 73 control points as shownin Figure 2.11.

Similar to the parametric cubic spHne curve, this resulting cubic parametric

surface is only C O continuous (the composition algorithm is simply the inverse

of the splitting algorithm, and in the splitting algorithm, knot insertion is re-

peated until the multiplicity of the knot value is equal to the degree of the

curve. The continuity is then defined as cd_ TM - multiplidty). According to this

algorithm, the M x N bi-cubic patches will result in (3M+1) by (3N+1) control

points of a single BSpline surface. One can perform the knot removal algo-

rithm to reduce the redundant knots [Ref 5,38,76].
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Figure 2.11 BSpline surface represents a nacelleof an engine.

Trnnsform Ruled Surface(Entity_118) to NURBS Surface

As aforementioned, using NURBS to represent a ruled surface has been

studied in many papers [Ref 42,43,44]. However, the definitionfor a ruled

surface in !GES format ismore general. The IGES defines the ruled surface

(entity118) as one surfaceformed by moving a lineconnecting points of either

equal relativearc length or equal relativeparauletricvalue (the issue of rela-

tivearc length and relativeparametric value isdiscussed in Chapter 4) on two

curves and by defining a variable named "DIRFLG" as directionflagto deter-

mine how the surfacewillbe connected. IfDIRFLG is0, then the surface will

connect the pointson the same directionofthe two curves. Ifthe DIRFLG is1,

the directionof one of the curves willbe reversed. The algorithm isdescribed

as follows:

Suppose the two boundary curves, have been converted to NURBS form

according to the previous algorithms. Then, the first step is to make the two

knot vectors have the same range by shifting and normalization of all the knot

values without changing the multiplicity of any knot value. Next, use the de-

gree raising algorithm to raise the low degree of the curve, which will yield a
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new knot vector and new control polygon. If this new knot vector differs from

the other knot vector, then perform knot insertion[Ref8] by inserting the knot

value which is not contained in both knot vectors to merge them into one final

knot vector. For the J direction, set the order equal to 2 and the knot vector as

[0,0,1,1]. IfDIRFLG = 0, then the weights and the control net are set as W(ij),

d(ij) = (weights and control points on the two boundary curve, i=O..m and

j=O,1). IfDIRFLG = 1, then the weights and the control net are set as W(i,O),

d(i,O) =_(weights and control points of the first curve, i=O..m), and W(i,1),

d(i,1) = (weights and control points of the second curve, i=m, m-l, ..., 1, 0).

Figure 2.12 shows the NURBS rule surfaces with the same boundaries but

with different direction flag (DIRFLG=O and DIRFLG=-I, respectively).

DIRFLG=O D IRFLG.ffi-1

Figure 2.12 NURBS surfaces represent the ruled surfaces.

Transform Surface of Revolution CEntitv 120) to NURBS SurfA_

Again, the surface of revolution has been discussed in many places [Ref

42,43,44,47]. However, the transforming procedures which can cover the more

general case is presented. IGES defines the surface of revolution (entity 120)

as the surface which is formed by rotating a boundary curve (called genera-
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trix) with respect to a straight line (axis of revolution) from a starting angle

(not necessarily zero) to an ending angle. This general algorithm can be

stated as follows:

First step is translating/rotating the axis of revolution so that it is coin-

cident with the Z axis. It is assumed that the generatrix is defined as NURBS

curve with the control polygon do to din, orderf-k, weights wo to Wm. Next, for

each control point d/(on the generatrix i = O,..,m), construct the surface control

net d U j=0 .. n at the i-th cross section according to the starting and ending

angle by utilizing the circular arc algorithm. Based on the procedure de-

scribed in the section of "Transform Circular Arc (entity 100) to NURBS

curve", n is determined by sector angle (equal to the difference between ending

and starting angle). For example, if the angle is less than 90 °, n is equal to 2,

if the angle is in the range of 900 -1800, n is equal to 4 ... etc. For the section

angle e, the weights are set as _] = wi, wi cos(e/n), wi, wicos(e/n), .... ( repeat

wi, wicos(e/n) with total n+l _rms). The knot vector in direction I (s) is the

same as the one of the generatrix while the other one in direction J (t) is deter-

mined according to the procedure described in the section of "Transform Circu-

lar Arc (entity 100) to NURBS curve _. The control net and the weights are

then transferred back to the original coordinates by reversing the translating

/rotating operations. Figure 2.13 shows the construction of the associated con-

trol polygon at each cross section for the case of n equal to 2 (section angle

equal to 900).

The final NURBS definition for the constructed surface in Figure 2.13

contains d_ i=O,..,m, j=O,..,2 as the control net. The order and knot vector in

the direction I are simply those of the generatrix, while the order in J direction



will be set as 3 and the knot vector is set as (0, 0, 0, 1, 1, 1).

(wi, wicos(90 / 2), wi ) i=O,..,m for allj.
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do1

do2 do

axis of revolution

Figure 2.13 Illustration of surface of revolution by NURBS construction.

Figure 2.14 illustrates an example for this algorithm. This figure dis-

plays the _candle stand" _S control nets as well as the revolved surfaces

for different starting and ending angles. Note the lei_ figure also shows the

generatrix.
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Figure 2.14 NURBS surfaces represent different surface of revolution.
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Transform Tabulated Cylinder (Entity_ 122) to NURBS Surf_Rc_

IGES defines the Tabulated Cylinder (entity 122), or extruded surface,

as a surface formed by moving a line segment (called generatrix) parallel to

itself along a curve (called directrix). In other words, given a NURBS curve,

one can generate another curve by extruding the given curve with a distance a
I

along a vector V.. Then the control polygon of this new curve is determined by

= d/+ aV. This NURBS tabulated cylinder is then defined as equation

(2.15):: .

S(s, t) =

Z W(ij)d(i_13N_(s)N_j(t)
i=Oj-O

_. _. W(ij)N_(e)N_j(t)
i=OjffiO

(2.15)

The knot vector in I direction is the same at the knot vector of the given curve,

while the knot vector in J direction is set to (0., 0., 1.0, 1.0). The order kl is the

same as the order of given curve, while k2 is set to 2. Theweights W(ij) are set

to the weights of the two curves, and the control net is set to d(i,O)=d_ and

d(i,1)--_i for i--O, ..., m. Figure 2.15 shows this algorithm for a tabulated cylin-

der.

Figure 2.15 NURBS surface represents the tabulated cylinder.



In this chapter, the formulas of NURBS are first discussed.

forming algorithms for converting different curve and surface
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The trans-

entities to

NURBS are presented. In the IGES standard, there are several other entities

which are not discussed in this chapter. The reason of that is many of the enti-

ties are not related to curve and surface definitions. For example, the entity

106 (copious data entity), entity 116 (point entity) and entity 132 (connect

point entity) will be treated as points, and the entity 124 (transformation ma-

trix entity) is used for geometric transformation. And the other reason is the

entities are already defined as NURBS, such as entity 126 (NURBS curve)

and entity 128 (NURBS surface). Some entities will be discussed in later

chapters. For example, the entity 130 (offset curve) and entity 140 (offset sur-

face) will be discussed in Chapter Three. Two entities m entity 142 (curve on

a parametric surface entity), entity 144 (trimmed parametric surface) will be

discussed in Chapter Seven.





CHAPTER III

NURBS IN STATIC GRID GENERATION

Utilizingthe NIffRBS definitionsforgenerating grids isthe focus ofthis

chapter. The organizationof thischapter isas follows.First,the basicconcept

ofsurfacegrid generation isintroduced. Utilizingthe "parametric _property of

NURBS entity to generate differenttopologiesforthe same surface structure

ismentioned in the next section.The third sectioncovers the surface genera-

tionfunctionsusing NURBS forconstructingthe geometry which iscommonly

used in CFS analysis. The generating ofvolume grids by various NURBS op-

tionswillbe presented in the lastsection.

Basic Concept for Surface Grid Generation

Structured surface grid generation involves the establishment of a one-

to-one correspondence between the non-uniformly distributed physical sur-

face and the uniformly distributed computational plane. Let r = (x](s,t),

x_(s,t), x3(s,t)) denote a parametric surface with Euclidean coordinates (Xl, x2,

x3) having parametric values (s,t). The surface grid associated with the com-

putational domain { (5 / 52) I 1 __._1__n, 1 __2__.m} will be denoted by r = ((x]_,

(x2)u, (x3)u), i=l,..,n and j=l,..,m. Also there exists a one to one correspon-

dence between the physical domain and the parametric distribution mesh.

This one to one correspondence also exists between the surface distribution

mesh and the computational domain. These relations are illustrated in Figure

3.1.

40
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 ,x2,xa) (s,t)

Physical space Distribution mesh Computation domain

Figure 3.1 Physical space, Distribution mesh and Computation domain.

ParAmetric Grid Generation

From the NURBS formula listed in Chapter Two, it is easy to under-

stand that the NURBS definition is presented in a parametric form. This

means that for any parametric value t ( s, t for the surface or s, t, u for the

volume) in the parametric domain, there exists' a unique point (excludes the

singularity case) onthe physical curve(or surface). This property actually can

be applied to the other geometric definitions, such as the Bezier entity [Ref

23,24,25], cubic splines [Ref23,34] and so on. However, the NURBS represen-

tation provides another unique property -- the local control property which

allows the designer to easily manipulate the geometry without altering the en-

tire geometric deW'ion. Utilizing these two proper_es, the NURBS can pro-

vide great flexib'fli'ty in grid generation applications. For example, the gener-

ating of surface grids otten requires different topologies m such as O type, C

type and H type grid [Ref72,73]. Generating a 3D surface from these different

topologies for the same surface may requiro repeated applications of a routine.

However, this goal can be achieved by using a 3D NURBS control polygon
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(control net for the surface or control volume for volume case) and weights

while generating the distribution mesh in 2D parametric space. This proce-

dure is also referred as _griding in parametric space s [Ref 93]. After generat-

ing the two dimensional distribution mesh (s(_1,_2), t(_l,_2)), one can evaluate

the NURBS entity by utilizing these 2D grid points as the parametric values

to achieve the final NURBS entity. The advantage of doing this is that it is

always easier to generate the grid in 2D parametric space within the [0,1]

square than as a complex 3D surface. Even though this approach may result

in an unexpected grid lines in physical NURBS entity, yet this problem can be

overcome by the _re-parameterization _ algorithm which will be described in

next chapter. Different topologies of NURBS surface grids generated by using

the same NITRBS control points and weights are demonstrated in Figure (3.2)

~ (3.4).

Figure 3.2 A O-type NURBS surface grid and the parametric values.

Figure 3.3 A H-type NURBS surface grid and the parametric values.



Figure 3.4 A C-type NURBS surface grid and the parametric values.
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Here, the change in topologies of physical surface grid orientation is ac-

complished by changing the topologies of the distribution mesh. The same

strategy can also be applied to the unstructured and hybrid cases. Figure (3.5)

demonstrates the unstructured approach, and Figure (3.6) shows two 3D sur-

faces created from the hybrid approach.

Figure 3.5 A unstructured NURBS surface grid and the parametric values.

Figure 3.6 Two NURBS hybrid surface grids.
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Surface Grid Generation bv NURBS Control Net

The transforming procedures described in Chapter Two are used to

transform an existing geometric definition from one form to another. For ex-

ample, one can transform an existing cubic parametric surface to a NURBS

definition. However, the generating procedures described in this chapter need

to create the geometry definition from scratch. Two NURBS surface genera-

tion functions which are frequently used for creating the grid for CFD analysis

are presented.

Transfinite Interpolation for NURBS Surface

From the examples shown in Figures 3.2 to 3.5, one can understand

that different topology grids can be generated by different types of parametric

values. This goal can also be achieved by constructing different types of con-

trol polygons and evaluating with regular parametric meshes. Taking the Fig-

ure 3.3aS an bxample, in order to generate "the H type grid, the intuitive way

is to create the NURBS H type control net for the NURBS surface. In many of

the numerical grid generation applications, the H type grid can be generated

easily by the transfinite interpolation algorithm (TFI) [Ref 15,73]. As a mat-

ter of fact, the TFI algorithm is the most frequently used function for the grid

generation.

TFI, also referred to as Coons-Gordon patch, is a bivariate interpola-

tion constructed from the suporposition of a set of univariate interpolation

schemes by the formation of the Boolean sum projector [Ref 73]. In other

words, given a set of boundaries (or isoparametric curves), the TFI is a func-

tion which constructs the interior surface grid bounded by the given bound-

aries. The Boolean sum operator for a surface is defined in equation (3.1).

PS = P_, ePq = P_,(8) + Pq(S)- P_P.q(8) (3.1)
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where P_(S9 interpolates the _ direction of boundaries (the given isoparametric

curves) and Pn(S) interpolates the 11 direction of boundaries, while P_Pn(S)

captures the failures of P_(8) and Pn(8). The final surface P8 bi-directionally

interpolates the given boundaries / isoparametric curves and forms interior

surface grid points bounded with the given curves. There are many functions

which can be applied to TFI. For example, one can use the linear, quadratic or

even cubic interpolation for function P in equation (3.1). Taking the linear in-

terpolation for a surface with the resolution N by M as an example, the equa-

tion (3.1) can be re-written as equation (3.2).

Rij = (1 - sij) Rij + sij RNj + (1 - tij) Ri, 1 + tij Ri_ M - (3.2)

Variables R U in equation (3.2)ar_e the control vertices which need to be deter-

mined. For the NURBS case, the R/j could be d=, dy, dz (control points) and w/j

(the weights).

This TFI function is a fundamental tool for generating grids in many

grid applications. However, equations (3.1) and (3.2) can not be applied to

NURBS TFI directly. The reason for this can be explained as follows: when

four NURBS curves are given to generate a NURBS TFI surface, the interior

control points can be created according to equation (3.2) (for the bi-linear in-

terpolation) by supplying the control,vertices of the boundaries without a

problem. The problem comes when,de_.._" g the interior weights. The

addition and subtt:action oporation_ in equation (3.2) may lead to the interior

weights being.negative or zero ValUeS,. Any negative weights will destroy the

convex htttl property of a .NURB. S entity, while any zero weights will make the
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control vertices lose their influence. This obstacle can be overcome by the mo-

dified NURBS TFI [Ref 37]. The formula for this is shown in equation (3.3).

(3.3)

Each term of the equation (3.3) (for the case of linear interpolation of P) is de-

fined as follows: the P_(S) represents a NURBS "ruled surface" (described in

previous chapter) with weights of W_ formed in _ direction (be'lice, the order is

2, knot vector is [0, 0, 1, 1] in _ direction), P_(S) represents another NURBS

"ruled surface" with weights of W_ formed in 11direction (order is 2, knot vector

is [0, 0, 1, 1] in 11 direction) and the P_P_(S) is a NURBS surface which is

constructed by using the 4 corners points as the control net with orders 2 by 2

in _ and 11directions. This is demonstrated in Figure 3.7 and 3.8.

11

C4

C2

Figure 3.7 Four NURBS boundaries to form a TFI Surface.

After creating the intermediate surfaces of P_(S), P_(S) and P_P_(S),

one has to perform the _knot insertion" [Ref 8] and "degree elevation" [Ref 14]

algorithms to these three surfaces to ensure all of them have the same orders

and same knot vectors in both the _ and 11directions. If the NURBS surfaces

have the same orders and same knot vectors, then the dimension of control net

would be the same also. Therefore, the control net of the final NURB TFI sur-
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face can be obtained by adding the control net ofP_(S), Pu(S) and subtracting

those of P_P_(S), while the weights are determined by multiplying W_ and W_.

&

Figure 3.8 A superposition diagram for a NURB TFI surface.

÷

P_P_

Comparing the NURBS TFI with the traditional TFI shows that the

NURBS TFI needs more computation because the weights need to be handled

properly. In addition, the knot insertion and degree elevation algorithms need

extra computation. However, this function is fundamental and useful when

there is a need to create H type grids. Also, when generating the volume grids

for a nozzle, this function is particularly useful to create the inlet and outlet

surfaces. Figure 3.9 demonstrates this example.

Figure 3.9 NIfRBS TFI creates the inlet / outlet surface for a nozzle.
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Cascading Technique for NURBS Surface

As it is discussed in the transforming procedures (described in previous

chapter), the surface of revolution algorithm can be used to model the symmet-

ric surfaces. In CFD applications, some of the geometries for analysis are

symmetric objects. An example of this could be the simulation of the flow

passing around a missile. Generally speaking, the surface of revolution algo-

rithm can be used to model a %imple" symmetric surface, but_ for many of the

CFD applications, the real geometric objects interact with other objects and

can not be modelled by rotating a boundary curve to form a surface of revolu-

tion. The example for this is shown in Figure 3.10 for a surface blade with the

boundary intersected with a fin. Even though this surface is still symmetric,

the surface of revolution (SOR) algorithm fails to model it.

Figure 3.10 Example of symmetric surfaces couldn't be modelled by SOR.

This situation also happens to the "cascade _ surface. A cascade surface

is usually referred to the _blade-to-blade" surface in turbemachinery [Ref 56].

Even though most of the cascade surfaces are a]fis--eymmetric, they can not be

modeled by the NURBS surface revolution algorithm. Also, in the grid gen-

eration area, creating the surface grid for the cascade is a challenge. The diffi-
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culty of modeling the surface grids for a 3D cascade surface is that when the

blade leading edge (or trailing edge) circle radius is too big, such as the ones in

a turbine, or if the blade setting angle (the blade angle) is very low, it is hard to

generate a well behaved H type grid. Particularly, there is often a grid cross-

ing near the leading edge (or the trailing edge) for such a geometry. Tradition-

ally, this kind of surface grid is generated by transforming the 3D surface of

the (x, y, z) coordinate to 2D parametric (m; a) space, griding in the parametric

space and then_transforming themback to 3D physical space according to the

relation of the (m" a). Detailed information can be referred to in [Ref 53,54].

In this research, the NURBS modeling approach is presented for modeling

this type of geometry.

The NURBS algorithm for modeling the cascade surface is described as

follows: given a boundary curve of a cascade surface, transform it to a BSpline

curve (as the curve A show, in Figure 3.11) by the interpolation technique (de-

scribed in later section). Create a plane which bisects the surface sector angle
p

(the (}, angle ofao_b shown in Figure 3.11) and then use the "Mirror _ function

[Ref 50] to reflect curve A with this plane to create the curve C. The curve C

will have the same order, knotv_tor and number Of control points as those of

curve A. The next step is to _a straight line lying on the plane which

contains the points oi, a and c. This is done by projecting the control polygons

(described at the later section of this chapter) of curve A to this plane and set-

ting the order, knot vector of this line to be the same as those of the curve A.

After this line is created, perform the surface of revolution algorithm (refer to

Chapter Two) to rotate this line with respect to the center of OlO2 for a total

sector angle of(}. A NURBS tabulated cylinder (refer to Chapter 2) with sector

angle (}will be generated after this step. However, this surface is not the de-
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sired cascade surface. Hence, one has to perform the last step: replace the

first and last iso-control polygons (in the axis direction) of this surface with

the existing BSpline curves A and C. Because the tabulated cylinder is

created by rotating a line which has the same order and knot vector as those of

curve A, it is secure to replace the two control polygons of the surface with A

and C without altering the entire shape of the surface. The control net, with

curves A and C replacing the first and last iso-control polygons, is the final

desired NURBS control net. A missile configuration, composed of the surface

of revolution and cascade surface, is shown in Figure 3.12 to demonstrate this

algorithm. Another example is shown in Figure 3.13 for a single rotation

propfan modelled by this algorithm.

d
curve B

curve C c

curve A

b

o/

Figure 3.11 Illustration of medeling cascade surface by the NURBS.
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Figure 3.12 A missile configuration modeled by the NURBS.

Figure 3.13 A single rotation propfan modeled by the NURBS.
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Volume Grid Generation by NURRS Control Voll]me

Volume grid generation algorithms have been utilized in many CFD

analysis procedures. A widely used technique to algebraically generate a

three dimensional volume grid is to utilize the transfinite interpolation algo-

rithm based on the bounding surface grids. However, the volume generation

techniques are seldom applied to CAD/CAM applications. Even though

NURBS representation has been widely used in many industry applications,

the geometry modeled by the NURBS volume approaches are seldom dis-

cussed in CAGD (Computer Aided Geometry Design) literature. In this chap-

ter, using the NURBS volume to model the geometry for the volume grid is

presented. Observing the curve and surface examples shown in previous

chapter, one can realize that modeling the geometry with NURBS may only

need very concise control polygons. Instead of storing the surface grid points,

one can store the associated control polygon (or control net for the surface)

with the associated weights to reduce the memory load. This is especially use-

ful for volume grid generation. Even though the computer memory availabil-

ity has been dramatically improved, a complicated geometry usually consumes

a lot of computer memory for the volume grid. Storing the NURBS control net

to reduce the size of entire volume grid is demonstrated in the examples of this

section.

The ultimate objective of the present research effort is to explore vari-

ous NURBS control volume options applicable to three dimensional grid gen-

eration. In this chapter, the development of NURBS ruled volume, NURBS

extruded volume, NURBS volume of revolution, NURBS composite volume

and Transfinite Interpolation (TFI) NURBS volume are discussed.
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NURBS Control Volume for a Ruled Volume

The easiest 3D NURBS volume to generate is the ruled NURBS vol-

ume. The algorithm is described as follows: Given two NURBS surfaces, the

first stop to form a ruled volume is making the knot vectors of the surfaces be

in the same range of [0-1]. Next, considering the I direction of both surfaces,

use the degree raising technique to raise the low degree (order - 1) of the sur-

face. This procedure willyielda new knot vector and new control net. If the

new knot vectordiffers from the other knot vector, then perform the knot in-

sertion algorithm to merge them into one final knot vector. Then apply these

steps to the knot vectors inJ direction of both surfaces. After this step, the

two NURBS surface will have the same orders and the same knot vectors in

both I and J directions. This means the resolutions of control net of both sur-

faces will be the same. Finally, connect the corresponding control point to-

gether to form the 3D NURBS volume. The orders and knot vectors of the fi-

nal volume in I and J directions will be the same as those of the surfaces aiter

degree elevation and knot insertion, and the order in L direction will be set as

two with knot vector set ,as (0,0,1,1). Figure 3.14 shows a 3D _apple-like _

_S volume andi_ volume grid while Figure, 3.15 shows a missile configu-

ration with thec0n_iv_l_e_form _ by:_ algorithm.

While d_.tl_e _S_ed s_ce, the IGES defines a variable

named "D1RFLG_ M: a_0_ fi _:t_ contr_,l: the _tion of how the surface

will be connected (refer to the previou s chapter). IfD/RFLG is 0, then the sur-

face will connect the points m the same direction of thetwo curves, otherwise,

the direction of one of the curves will be reversed. Similar to this definition, it

is possible to set the two flags "DIRFLG_P and "DIRFLG_J _ to control how
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Figure 3.14 NURBS control volume and grids for ruled volume.

Figure 3.15 NURBS control volume and grids for a missile configuration.
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the directions of the two surfaces will be connected. The use of these flags in-

creases the flexibility of generation options.

_S Control Volume for an Extruded Volume

The generation of a NURBS extruded volume is an extension from the

extruded surface definition. The IGES defines the extruded surface as a sur-

face formed by moving a line segment parallel to itself along a curve. In other

words, given a NURBS curve, one can generate another curve by extruding

the given curve with a distance a along a vector V. Similar to this definition,

the NURBS extruded volume is defined as follows: Given a NURBS surface

with control net d/j and the associate weights, knot vectors and orders. The

new surface _. can be generated by _extruding _ the given surface with a dis-

tance a along a vector V.. Mathematically, this new NURBS extruded surface

can be described as _ = d/j + aVwith the same orders, same weights and same

knot vectors as those of the given surface. After this step, the algorithm of

_ruled volume _ (described in previous section,-it simply connects these two

surfaces and sets the L direction linearly) can be applied to these surfaces to

form a final NURBS volume. Figure 3.16 shows an example of a 3D NURBS

extruded volume.
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Figure 3.16 NURBS control volume and grids for extruded volume.

NURBS Control Volume for a Volume of Revolution

Another commonly used approach for generating volume grids is the

"revolution _ method. A revolution resulting in a surface is known as a %ur-

face of revolution', while a revolution resulting in a volume is then defined as

a _volume of revolution'. The fact that this modelling technique can only be

used for symmetric geometries is not limiting, as many objects in real world

applications, such as turbomachinery configurations, are symmetric. The ex-
T.

tension of a volume revolution modeled by NURBS is presented as follows: the

definition of surface of revolution is a surface which is formed by rotating a

given curve with respect to an arbitrary straight line from a starting angle to

an ending angle (referred to Chapter 2). Likewise, the volume of revolution is

defined as a volume form by rotating a given NURBS surface with respect to

an arbitrary axis of revolution from any starting angle to an ending angle.

The general algorithm is outlined as follows: the first step is translating

/ rotating the axis of revolution by proper transformation matrix so that it is
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coincident with the Z axis. This transformation matrix is also applied to the

given NURBS surface so that the entire surface can be kept in the same posi-

tion as the axis of rotation. It is assumed that the surface is defined (or trans-

formed) as NURBS with the control net dij, order kl and k2, weights W._ and

two knot vectors. The second stop is to construct, for each control net d/j (on

the generatrix i= O,..,m, j= O,..,n), the control volume d/j7 l=0 ... p at eachj-th

cross section through the starting and ending angle by utilizing the circular

arc algorithm. In other words, this approach constructs the NURBS control

net at each J constant plane by revolving the control polygon d/j with respect

to L direction and then _stack _ them together to form a final NURBS volume.

Figure 3.17 demonstrates this approach. The general procedure of generating

the NURBS circular arc is described in Chapter 2. The p for the last dimen-

sion of control volume is determined by the sector angle 0 (equal to the differ-

ence between ending and starting angle). For example, if the angle is less

than 90°,p is equal _ 2. If the angle is in the range of 90 ° - 180°,p is equal to

4, if in the range of 1800 ~ 270 °, p is 6, if it is greater than 270 °, p should be 8.

For the sector angle 0, the weights are set as (in each J constant plane, J=0,..n)

WiJp = wij, wij cos(q/p), wij, WijCos(q/p) ,... i=O,..,m ( repeat w/j, wijcos(q/p)

with total p+l terms). The knot vectors in directions ofI (s) and J (t) are the

same as the ones of the given surface while the knot vector in direction L (u) is

determined according te the drcula_ arc procedure. For example, whenp is 2,

the associated knot vectoris set as (0, 0, 0, 1, 1, 1), for the case ofp equal to 4,

the knot vector is set as (0, 0, 0, 1/2,1/2,1, 1, 1), for the case ofp equal to 6, the

knot vector is set as (0, 0, 0, 1/3, I/3, 2/3, 2/3, 1,1,1) and for the case ofp equal

to 8, the knot vector is (0, 0, 0, .25, .25, .5, .5, .75 , .75,1,1,1). Also, set the
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orders in I and J be kl and k2 (as the orders of the original surface) while set 3

as the order of L direction.

rotationaxis

0

Figure 3.17 Illustration of constructing the NURBS volume.

Because the NURBS has the translate and rotate invariant properties,

the inverse transformation matrix can be applied to the control volume (with-

out altering the weights and knot vectors) returning the volume to the original

coordinates. Figure 3.18 shows a 3D volume grids and its control volume ac-

cording to this algorithm. This example was developed by revolving the TFI

surface from 00 to 1800. Because the NURBS surface TFI technique needs

four boundary curves to define a surface, this will result in a _/_ type surface

grids. Revolving this _H _ type TFI surface creates _H _ type NIYRBS control

volume and yields the _/E' volume grids. This topology can be changed by re-

volving another _O _ type NURBS surface to fore an _O _ type volume grids as

shown in Figure 3.19. Notice that the sizes of this control volume are only



59

3x3x5 (for _/F' type grids) and 9x9x5 (for _O _ type grids), yet the resolution of

the entire volume grid could be any number (for this case, 31 by 31 by 61).

Figure 3.18 NURBS revolution volume for H type volume grid.

Figure 3.19 _S revolution volume for O type volume grid.

NURBS Control Volume for a Composite Volume

A composite NURBS volume is defined as a volume consisting of lists of

constituent volumes. The composing procedure is stated as follows: Suppose

two constituent NURBS volumes VI and V2 form a composite volume. Assume

that V1 has control volume dl[O:ml, O:nl, 0:ll], weight Wl[O:ml, O:nl, 0:ll],

three knot vectors knot_i)1, knot_j)1, knot_l)1 and orders k_/)l, k_J)l, k_l)l

while V2 has control volume d2[O:m2, O:n2, 0:12], weight W2[O:m2, O:n2, 0:12],
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three knot vectors knot..i)2, knot.j)2, knot..l)2 and orders k_i)2, k_j_, k_l)2.

There are many possible combinations of the two volumes joined together. For

example, one may join the volumes in I direction with the interface of J, L sur-

face, or join in L direction with the interface of/, J surface, etc. Even though

there are many cases, the procedure is similar. Take the case when joining in

I direction as an example, the first step is to perform the degree elevation to V1

and V2 so that these two volumes can have compatible degrees in/, J and L

directions. If the two knot vectors in J direction for V1 and_V2 axe not the

same, merge them together by setting the final knot vector as { knot_j)1 [

knot_j)2 }, then apply the knot insertion to V1 and V2 in J dimension. The

same procedure should be applied to L direction if knot_l)1 and knot._l)2 are not

the same. After this step, 1/'1 and V2 will have the same degree in three direc-

tions, and the number of control points and knot vectors in J and L directions

will be the same. The second step is to adjust the knot vector knot_i)2 so that

its firstknot value can be the same as the last knot value knot, i)1. Shifting

the knot vector will not change the original NI_S because the basis function

is a _normalized" basis function. The third step is to build up the final knot

vector by joining the two knot vectors into one knot vector and setting that

knot value at the joint point to have the multiplicity equal te.(order -1). For

example, if the knot vector knot_i)1 is [0., 0., 0., 1., 1., 1.] and the knot vector

knot_i)2 is [2, 2., 2., 3., 3., 3.], adjust the second knot vector by shifting -1 to

each value. Thus, the knot..i)2 becomes [1,1,1,2,2,2]. Suppose the final order

of these two volumes in I direction is three, then, the final knot vector should

be [0., 0., 0., 1., 1, 2., 2., 2.] (notice the interior knot 1 has multiplicity of(or-

der-1)ffi-2). The fourth step is to match the weights at the interface surface by

multiplying the ratio of Wl[ml, j, l]/ W2[O, j, 1] to W2[i, j, l] for i=O, ..., m2,
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j=O, ..., nl and l=O, ..., 11. The last stop is to construct the final control volume

and weights by removing the d2[O:O, O:n2, 0:12] and W2[O:O, O:n2, 0:12] and join-

ing the others as one control volume an d weights.

Figure 3.20 demonstrates this algorithm. This 3D NURBS composite

volume can be easily created by the following stops: First, use the algorithm of

generating the ruled surface to form a NURBS surface by connecting two full

NURBS circles, then extrude this surfacewith a proper distance a to form the

first sub volume (the cylinder pipe) by the extruded algorithm. Second, ex-

tract the last cross section surface and revolve it with 90°to form the second

sub volume (the turning portion) by the revolving algorithm. The third stop is

exacting the last cross section surface of the second sub volume and revolving

it 1800 to form the third sub volume (the turning portion). The forth stop is

extracting the last cross section surface of the previous volume and extruding

it with a proper distance a to form the last sub volume (the cylinder pipe) by
/

the extruded algorithm, and the last step is applying the composite algorithm

to form the final volume. The dimension of this NURBS control volume is only

9 by 11 by 2, yet it can creato volume grids as large as 121 by 91 by 31. The

flow field solution obtained using the NPARC [Ref 16] flow simulation code for

this configuration is also included.
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Figure 3.20 A composite NURBS pipe volume with the NPARC solution.
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Generally speaking, it is difficult to model a complicated geometry by a

single NURBS control volume. However, one can construct the individual con-

trol volume and then utilizing this composite algorithm to merge for a final

volume. Figures 3.21 and 3.22 demonstrate the flexibility and the advantage

of this approach. The NURBS control volumes are used to model the internal

pipes. The griding of the turning portions of those circular pipes is a time con-

suming and tedious task in Igrid generation. However, the turning portions

can be constructed by "volume of revolution _ without any difficulties. Assem-

bling all the sub NURBS volumes makes the final single block NURBS control

volume.

Figure 3.21 Composite NURBS volume for a turning pipe (i).
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Figure 3.22 Composite NURBS volume for a turning pipe (ii).

NURBS Control Volume for a TFI Volume

Similar to the NURBS TFI surface algorithm, this approach is fre-

quently used to generate an H type volume grid. Instead of providing 4

NURBS curves, this algorithm requires six NURBS surfa_ to generate a

NURBS TFI volume. This algorithm is the extension from the surface to vol-

ume, hence, the Boolean sum equation is defined as equation (3.4).

pv= e e =

P{V + PnV + P_V- P{PnV- PnP_V-P_P_V + P_P_P_V (3.4)

The P could be any interpolation function, such as the linear, quadratic

hermit or the cubic interpolation and so on. The traditional definitions of

each term in equation (3.4) can be found in [Ref 73]. However, as it is dis-
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cussed in the NURBS TFI surface section, the traditional TFI approach [Ref

61,73] can not be applied to the process of generating a NURBS TFI control

volume because the addition and subtraction operations in equation (3.4) may

lead to zero or negative weights in the interior control volume. Any zero

weight will make the corresponding control point lose its influence and the

negative weights will create undesirable grids, such as the un-bounded grids

or crossing grids. Hence, when applying the equation (3.4) to a NURBS TFI

volume, it is necessary to re-define the individual terms listed in equation

(3.4). The procedure is shown as follows: suppose the six NURBS surfaces are

all pre-defined, and the surfaces of $1 and $2 are used for the _ direction. $1

and 82 have the same orders of k2, k3, and same number of control points of n

by L (refer to Chapter Two). If the orders of these two surfaces don't match,

one should perform the degree raising algorithm to the low degree surface. If

the resolutions of the control points of SI and $2 are different, then the knot

insertion algorithm should be used to make them the same. The same proce-

dures should be applied to the surface of $3, $4 (with the orders of kl, k3 and

the resolutions of control net ofm by L) and $5,86 (with the orders of kl, k2

and the resolutions of control net of m by n). ARer this step, the definition of
/

each term for a linear NURBS TFI volume can be defined as follows: the P_Vis

a NURBS volume which is created by using the surfaces of $1 and $2 with the

algorithm of the "Ruled NURBS volume _ (described in the previous section of

this chapter). Hence, the three orders of P_V are 2, k2 and k3, while the reso-

lutions of the control volume is 2 by n by L. The same procedures should be

applied to P_IV and P_V. Therefore, the orders of P_V are kl, 2, k3 with the

resolutions of the control volume of m by 2 by L, while the orders of P_V are

kl, k2, 2 with the resolutions of the control volume ofm by n by 2. P_P_(V) is a
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NURBS volume which is created by utili_n5 the boundaries (in _ direction) of

$1, $2 and the corner points of S3, 84, $5, $6. In other words, it has orders of 2,

2, k3 and the dimension of control volume of 2, 2, L. The PnP_(V) and P_P_(V)

are defined analogous m the orders of the PnP_(V) are kl, 2, 2 and the resolu-

tion of the control volume is m, 2, 2, while the orders of the P_P_(V) are 2, h2,

2 and the resolution of the control volume is 2, n, 2. The last term ofP_PnP_(V )

is simply a NURBS control volume constructed by all the corner points of the

six surfaces. Hence, the orders of this volume are 2, 2, 2 and the size of control

volume is 2 by 2 by 2. These seven control volumes are illustrated in Figure

3.23.

Alter these seven intermediate control volumes are created, equation

(3.5) should be used for the final linear NURBS TFI. This equation will avoid

the creation of any undesired interior weights.

In addition to the algorithm of NURBS TFI surface, one has to perform

the "knot insertion" and "degree elevation" [RefS,14] algorithms to all of these

seven intermediate control volumes to ensure aH of them have the same orders

and same knot vectors in all the _, 11 and _ directions, respectively. After this

step is completed, the size of all the control volumes would be the same.

Hence,_the final control volume for NURB TFI can be obtained by adding the

corresponding control points of P_(V), Pn(V), Pc(V), P_PnP_(V) and subtracting

those of P_Pn(V), PnP_(V) and P_P_(V), while the weights are determined by

multiplication of W_, Wn and W E. Figure 3.24 shows an H type nozzle gener-

ated according to this approach.
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Figure 3.23 Illustration of NURBS TFI volume.
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Figure 3.24 A NURBS TFI nozzle with H type volume grid.

General Interpolation Algorithm

Another category of generating grids is by the interpolation methods.

This technique is frequently used for modeling the sculptured discretized data

points. Many interpolating algorithms, such as the "cubic spline interpola-

tion', _range interpolation', _BSpline interpolation" and _I-Iermite inter-

polation" are well known approaches. Among them, the BSpline interpolation

technique has been frequently utilized in many of CFD researches. The exam-

pies can be found in Yang's General Purpose Adaptive Grid Generation System

[Ref 83,84,85] and Shih's TIGER (Turbomachinery Grid Generation System)

[Ref 53,56]. Also, other grid generation softwares provide the interpolation

option. These softwares include Genbe++, EagleV'_ew and NGP. Many of the

softwares use rids technique only for certain order (most of them, order is set

to four), In this study, a general BSpline interpolation algorithm which allows

for an arbitrary order is presented.
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The definition of interpolation for the curve data set is defined as fol-

lows: given discrete data points _., j=O,..,n, construct the BSpline curve (set all

the weights to I for the NURBS curve) such that the BSpline can pass through

all the given data points Q/. Mathematically, this is described in equation

(3.6).

Qj ffiC(t) ffiC(_j) = _ d.JV/k(Fj)j = O,.;.n
iffiO

(3.6)

From equation (3.6), there are four unknowns: d (control polygon), k

(the order), Nki(_) (the basis function, which is related to the knot vector) and

the parametric values _. The _ is used for evaluating the BSpline curve and

can be obtained by the relative chord (arc) length parametrization or the "cen-

tripetal _ parametrization [Ref 23,34] from the given data points {_. From the

previous chapter, one knows that the normalized chord length parametriza-

tion will lead uo = 0.0 and _,-1 = 1.0. Then, the user has to decide what order

(k) should be used (generally speaking, k=3 or 4 are sufficient). After the k

and _ are known, the knot vector T is determined as T = [0, ... 0, ti, ..., tn-_-l,

1,.1] with the knot value tj defined as equation (3.7).

j+ O_- 1)-1

tj -- (k1_ _,1) _'- [ri: j ffi 1,.., n-(k _- 1) (3.7)
i=j

Once the information ofk (the order), knot vector and _- are all set, solv-

ing the equation (3.6) for the unknown d (the control points of Bspline) will

result in a (n+l) by (n+l) linear equation. Notice that the knot values of 0 and

1 have the multiplicity of k, hence, the interpolated BSpline curve will have

the first control point identical to the first of the data set (do = Qo), and the
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ear equation is listed as equation (3.8).
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This lin-

1 0 .. 0

Nk0(/_l ) Nkl(_l ) ... Nkn_l(/T1 )

Nk0%) ... Nil( 

•N'_o(U"n_ 1) Nkl(_n_l ) ... /_kn_l(_'n_l)

0 0 ... 1

d o

dl

d 2

dn-i

dn

Qo

Q1

Q2

(3.8)

Based on the knowledge of NURBS, one knows that there are at most k

non-zero basis functions for any particular _/for order k. Hence, the system

of equations in (3.8) are banded with width no larger than k. The LU decom-

position or Gauss elimination [Ref 19] can be used to solve equation (3.8) for

the control polygon d/.

The interpolation of the BSpline surface for the discrete data set is

analogous. It is defined as follows: given discrete data points C_/, i=O,..,m,

j=O,..,n, construct a BSpline surface such that this surface can pass through

all the given data points QO'" This can be presented as equation (3.9)

m n

i-ffi0j-0

i = 0, ..m j- 0, ..n (3.9)

The u/and _. are the parametric values obtained by the relative chord

(arc) length or the %entripetal _ parametrization [Ref 28,34] from the given

data points QU. As is mentioned in previous section, the BSpline surface is
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tion (3.10) shown as follows.
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Equation (3.9) can be rewritten to equa-

Q_ - _'_ _'_ d"Nk'(F-') (_i) = dilV_(_i)/._1/._ ir "Y J F -
iffi0Uffio j iffio

i-----0_ °. m

(3.10)
j=O, ..n

Therefore, the interpolation of a BSpline surface with any arbitrary or-

ders can be implemented by interpolating each row of the control polygon by

using equation (3.6) to obtain the intermediate cross section control polygons.

Then each column of these intermediate control polygons must be interpolated

to obtain the final control net.

A direct application of this interpolation is illustrated for the transform-

ing algorithm for the IGES entity 130 (offset curve) and entity 140 (offset sur-

face).

Transform Offset Curve (Entity 130) to NURBS Curve

An offset curve defined in IGES 5.1 is created by "offsetting" a existing

parametric curve with a specified distance. The curve to be offset must be a

planar curve, and must be slope continuous over the entire curve. Let this

base curve be represented as r(t), -_.and let V be a unit vector normal to the

plane which contains r(t). Because r(t) is a slope continuous planar curve, its

unit tangent vector can be obtained, Let this tangent vector be T(t), then the

desired offset curve is defined as equation (3.11).

OC(t) = r(t) + f(s) × (V × T(t)) t 1 _ t _ t 2 (3.11)

Variables tl and t2 are the starting and ending parametric values which must

be chosen to be in the domain of the base curve r(t). The its) is a function con-

trolled by a variable, FLAG, given in the IGES file. If the FLAG is equal to 1,
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the equation (3.11) is a uniform offset curve. In other words, _e) is set as a

constant value, say 1)1. The 1)1 is used as the constant offset distance for the

offset curve. If the FLAG is equal to 2, then the offset distance is set varying

linearly from the distance of DI to 1)2 by the equation (3.12).

(8 -- TD1)
f(s) =D I+(D 2-D1) x

(TD 2 - TD1) (3.12)

f_

s, TD1 and TD2 are either the accumulated arc length or the parametric values

defined in the IGES document.

After knowing how the offset curve OC(t) is created, it is easy to convert

this offset curve to a BSpline representation. The first step is transforming

the base curve to a _S representation according to the algorithms de-

scribed in chapter 2. It is well known [Ref3,4,31,33] that the oC(t) can not be

generated by applying equation (3.11) to the NURBS control polygons of the

base curve. The simplest reason for this is that most of the control polygons

are not slope continuous. Also, the order of the _rve is not preserved after the

offset procedure. Hence, one should evaluate the base curve for the set of dis-

crete data points with reasonable resolution. Furthermore, tlie tangent value

should ;be stored at the vector T(t) at each data point. Then,_:equation (3.12)

should be used obtain another set of points according to the variable FLAG (to

have a uniform / non-uniform offset curve): -The curve interpolation algorithm

is then applied to these data points to obtain a BSpline curve with the desired

order. Figure 3.25 shows the base curve (a NURBS curve with the control

polygon) and a non-uniform offset curve obtained by this algorithm.
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S base curve

Figure 3.25 NURBS base curve and the non-uniform offset curve.

Transform Offset Surface (Entity 140) to NURBS Surface

The transforming procedure of this entity is analogous to the curve pro-

cedure. Given a base surface S(u,v) which is defined by its specification pa-

rameters and oriented by N(u,v), which is a differentiable field of unit normal

vectors defined on the whole surface, the offset surface is then defined as

equation (3.13), where D is a fixed nonzero real number used for the offset dis-

tance.

OS(u,v) = S(u,v) + D x N(u,v) u 1 _ u _ u 2 ttI < U < 02 (3.13)

N(u,v) is obtained by the cross product of the two surface derivatives. In other

words, N(u,v) = (_}S/'du x _)Sfdv) / II_)SfJu x _)S/'dv[I. Because this unit normal vec-

tor could have two directions, the IGES documentation also provides an "offset

indicator" [Ref 35] to avoid confusion Connecting the orientation of the base

surface.

Transforming the offset surface to a BSpline surface is similar to the

one of offset curve. The first step is to transform the base surface to a NURBS

representation according to the algorithms described in Chapter Two. Again,

it is not possible to apply the equation (3.13) to the control net of the base sur-

face to form the offset surface. The correct procedure is to evaluate the base
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surface for a set of data points with reasonable resolutions. Also, at each data

point, the two surface derivatives should be calculated to obtain the union nor-

real value N(u,v). Then utilize the equation (3.13) to obtain the final set of

points. The surface interpolation algorithm is then applied to these data

points to obtain a BSpline surface (NURBS surface with all weights equal to 1)

with the desired orders.

In these transforming procedures, one may have a question: Since the

equations (3.11) and (3.13) can not be applied directly to th_control polygon

(or control net) of the base curve (surface), why is there a need to transform

the base curve (or base surface) to the NURBS representation? The answer to

this question is related to the accuracy of the tangent vector obtained from the

base curve (or the union normal vectors from the base surface). Equations

(3.11) and (3.13) require T(t) and N(u,v), which are the tangent vectors of the

curve and the union normal vectors of the surface. Once the base curve and

the base surface are transformed to the NURBS representation analytically

(based on the transforming algorithms described on chapter 2), the variables

of T(t) and N(u,v) can be calculated exactly. Using the exact derivative can

reduce the interpolation error, and thus, increase the accuracy__ of the final off-

set curve / surface.

Geometry Modeling by Interpolation Technique

Besides the NURBS generation functions presented in previous sec-

tions, the interpolation technique is also a widely used approach for creating

the curves or surfaces. It has been commonly used for transforming a discrete

data set to a BSpline (the special case of NURBS) definition. Specifically, it

has been used to fit the free-form or sculptured curves and surfaces. Unlike

the approximation method, which does not require the final curves or surfaces
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pass through the given data set, the interpolation method does require the

curve or surface which must satisfy the given data set precisely.

From the equations (3.11) - (3.13), one can easily understand that there

is a drawback for this technique m the disadvantage of this method is that the

size of the control polygon of the interpolated BSpline curve will be the same

as the size of the input data set. This destroys the advantage of saving the

computer memory when using the NURBS definition for geometry modeling.

when the size of data points are huge, this interpolated approach will result in

a huge control polygon (or control net). Fortunately, the data reduction meth-

ods [Ref 5,30], which have been discussed in many literatures, can be used to

reduce the redundant control points and maintain the desired accuracy. Fig-

ure 3.26 shows the BSpline curves which model an engine profile. The dis-

crete data points are originally ob_ed from a digitizer. The curve interpola-

tion method is the n applied to these points to generate the BSpline control

polygons. The associated control polygons have been reduced by the data re-

duction algorithm describe d in [Ref 10,38]. After defining these curves with

BSpline representation, the surfaces for this axial symmetric engine can be

generated by a simple rotation with respect to theXaxis. Figure 3.27 and 3.28

show the associated surface grids and the NURBS control nets for this engine.

Figure 3.26 The curve interpolation technique for a engine profile.



Figure 3.27 Surface grids for the multiple-duct engine.
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Figure 3.28 NURBS control nets for multiple-duct engine.

Modeling the volume grid for this geometry requires the multi-block

strategy. A valid domain decomposition is to break the entire surface control

nets into several NURBS TFI sub-patches and then apply the volume of revo-

lution technique to these sub-patches to construct the entire multi-block

NURBS control volumes. Figures 3.29 and 3.30 show the NURBS control vol-

ume and the volume grids.
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Figure 3.29 Multi-blocks NURBS control volume for mock engine.

Figure 3.30 Multi-blocks volume grids for mock engine.
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Another geometry modeled by this technique is the wind tunnel design.

The boundary of this wind tunnel is given with a set of discrete data points

(121 points). The curve is interpolated by the equations (3.6) ~ (3.8), and the

data reduction algorithm is used to reduce the redundant control polygon.

Figure 3.31 shows the interpolated BSpline curve with the reduced control

polygon.

r q
/,

Figure 3.31 An interpolated BSpline curve for nozzle boundary.

Because this curve is parallel to z axis, one can utilize the _surface of

revolution" algorithm (described in chapter two) to construct a NURBS sur-

face by revolving the curve with respect to the z axis. The surface will be sym-

metric with respect to the z axis. One can apply the "scalin_ algorithm to this

NURBS surface with zero x, y scaling factor to generate anotl_er NURBS sur-

face. This surface will be a degenerate surface which aligns to the z axis. This

is demonstrated in Figure 3.32, _ these two NURBS surfaces are ob-

tained, one can perform the Krulod volume" algorithms (described in previous

section) to construct the final NURBS 3D nozzle volume grid. Figure 3.33

shows the final nozzle.
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NURBS control net

surface

Figure 3.32 A nozzle geometry constructed by NURBS.

Figure 3.33 A 3D NURBS nozzle.
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Proiection and Inversion

After presenting the interpolation technique for modelling the free-

form curve and surface, one may be interested to know how "we]] _ the interpo-

lated curve (or surface) describes the discrete data set. The algorithms to

measure the deviation between the interpolated curve (or surface) and the

sculptured data points are the "projection" and "inversion s algorithms. The

definition of the projection problem can be stated as: Given an arbitrary point

P = (x, y, z) in 3D space, find a point on a NURBS curve orsu_rface such that

the dish'race between this point and point P can be the shortest_ The definition

of the inversion problem is that given the point P, assuming this point is on the

NURBS entity (curve or surface), find the associated parametric values t (for

curve) or s, t (for surface) such that one can utilize this parametric value to

obtain the point P. More precisely, finding t such that C(t) = P (for curve) or

finding (s,t) such that S(s,t) = P (for surface).

For the projection problem, if the point P is on the NIYRBS curve (or

surface), then the shortest point would be the point P itself. Then, finding the

parametric value for this P would become the inversion problem. Hence, the

projection and inversion problems are the two sides of the same question. This

question can then be combined with the two definitions and stated as: Given a

point P (not necessarily lying on the NURBS entity), find the parametric value

such that the parametric value can generate a point P*, which is on the

NURBS entity, and such that the distance of PP* is also the shortest. If the

point P is on the NURBS entiW, then the P* would be identical to point P (or

the distance of PP* would be zero). This is illustrated in Figure 3.34 for the

CUl_e case.
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Figure 3.34 Illustration of projection and inversion for NURBS curve.

The algorithm is described as follows (refer to Figure 3.34 for the curve

case): Let P be the point in 3D space, C(t) be the point on the NURBS curve

with parametric value t, and C'(t) be the tangent vector associated with para-

metric value t. The value of t is obtained by solving the equation (5.1) formed

by the inner product of the two vectors.

f(t) ffi C'(t) • (C(t) -P) ffi 0 (3.14)

When the distance from point P to C(u) is minimized, these two vectors will be

orthogonal to each other, and hence, the inner production function f(t) will be

zero. The desired parametric value t which causes the shortest distance can

be obtained by using the Newton Raphson iteration. The iterative equation is

listed as equation (3.15). L

f(t i) C'(ti) • (C(t_) - P)

ti+l = ti f '(t_) - ti - C"(t i) • (C(t_) - P) + IC'(ti)l 2 (3.15)

The derivative of the NURBS curve, C'(t/) and C"(t/), can be found in

[Ref 44,47]. The tolerance e is set to check the convergence, and the stopping

criteria can be set by either I t/+l - t/ I _ e or I C(t/) - P _ _< e. Upon conver-

gence, t/is the desired parametric value (for the inversion problem), and C(ti)

is the projected point (for the projection problem).
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The problems of projection and inversion for the NURBS surface are

analogous. Because there are two independent variables (s, t) for a surface, it

is necessary to create three vectors to form the equations. This yields the two

inner production equations shown as (3.16) and (3.17).

f(s, t) = (8(s, t) - P) • So(s, t) = 0

g(s, t) = (S(s, t) - P) • St(s, t) = 0

(3.16)

(3.17)

The Ss(s,t) is the derivative ofa NURBS surface with respect to I direc-

tion evaluated at parametric value (s,t), while St(s,t) is the derivative of a

NURBS surface with respect to J direction evaluated at parametric value (s,t)

[Ref 34,44]. When the distance between the point P to the point S(s,t) is the

shortest, equations (3.16) and (3.17) will be satisfied. The Newton iteration

for solving equations (3.16) and (3.17) is shown in equation (3.18).

(3.18)

Let vector R be R--S(s,t) - P. Then the elements of matrix on the left hand side

in equation (3.18) can be rewritten as:

f,(s i , tj)= IS,12 + R(si, tj). S,,

f,(s , tj) ffis, . s, + R(,, , tj) . S,,

gs(8 i , tj) = Ss "S t + R(s i , tj) " Sst

gt(si, tj)- [St[2+R(si, tj).Stt

(3.19)

(3.20)

(3.21)

(3.22)

Also L_ - _+1 - _, _ - 8/+1 - 8/. The convergence is achieved when the differ-

ences of _j and _ both are under the tolerance. The values of t/and s/are

then the desired parametric values (for the inversion problem), and the point

S(si ,ti) is the projected point.
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The algorithms of projection and inversion can be applied to many ap-

plications. For example, one can use the projection algorithm to measure the

deviation between the discrete data set and the BSpline curve (or surface) ob-

tained by the interpolation technique. This is done by projecting the discrete

points to the interpolated curve. If the corresponding projected points are

within the tolerance with respect to the original discrete points, then the in-

terpolated BSpline curve is good enough to model the data set. The other ex-

ample, as shown in Figure 3.35, projects an arbitrary curve on a NURBS sur-

face. In this Figure, two points are selected on the NURBS surface. The

inversion algorithm is then used to obtain the associated parametric values in

the domain of the surface. A line joining these respective parametric values is

evaluated to form the curve on this surface.

Figure 3.35 The projection of a curve to a NURBS surface.
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CHAPTER IV

GRID REDISTRIBUTION AND EVALUATION

NURBS has been used in the CAD/CAM system for decades. It has

been used for free-form surface representation and modeling for a long time.

And from the generation and manipulation abilitiesdescribed in previous

chapters,one can realizethat NURBS has become a CAD/CAM industry stan-

dard due to itsversatileproperties. However, there are several difficulties

which inhibitpeople from fullyutilizingthis representation. The software

tools available to designers for creating and reshaping such geometry are

oi_n ineffffcientforindustrialparts,thereby consuming a large amount ofde-

signer time.

Obstacles of Using NURBS

The obstacles of using NURBS are discussed as follows:

Geometry Fidelity Maintenance

The NURBS representation is a parametric representation, and it is difficult

to obtain the desired parametric value to maintain the critical geometric loca-

tion. An example of this would be a NURBS representation which contains a

sharp comer, which is defined as a slope discontinuity. How can the proper

parametric value be obtained to maintain the original geometric information?

Figure 4.1 shows the control polygon and its grid points on a NURBS compos-

ite curve. The curve does not maintain the sharp comer at the joint portion

of the straight line and circular arc. Hence, the geometric fidelity is lost. The

84
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challenge of this problem is to obtain the proper parametric value t such that

the final curve would be the one shown in Figure 4.2.

Figure 4.1 Improper parametric values lose the geometry fidelity.

• %I .¸

Figure 4.2 Proper parametric values keep the geometry fidelity.

Distribution Control of the Grid Points on a 3D Physical Space

The NURBS entity (curve, surface, or volume) is presented as a para-

metric format, and the grid point on a NORBS entity is generated by evaluat-

ing the parametric value t (or s, t for surface, s, t, u for the volume). However,

the designer desires the distribution of the grid points on the physical NURBS

entity, not the distribution of the parametric values. For example, evenly dis-

tributed parametric values t may not result in a sequence of evenly distrib-

uted grid points of C(t) on the physical NURBS curve. Finding the correct

parametric values to obtain the desired distribution on 3D physical space has

presented a problem to engineers for a long time. Figure 4.3 shows the control

polygon and grid points on a NURBS curve. Even though the parametric val-



86

ues used for evaluation of this curve are distributed evenly in parametric do-

main, one can observe that the grid points are actually packed toward the

middle. The location of the control polygon, the weights and even the knot vec-

tor are all possible factors in controlling the final NURBS entity. The chal-

lenge of this problem is, without altering the NURBS definition (control poly-

gon, weights and knot vector), calculating the proper parametric values to

obtain the desired distribution on the physical NURBS entity._as shown in Fig-

ure 4.4.

Figure 4.3 Illustration of undesirable distribution on NURBS curve.

Figure 4.4 Illustration of desirable distribution on NURBS curve.

Bad Parameterization

It has been previously mentioned that, setting the communication be-

tween CAD/CAM and grid generation system is a ideal for shortening the en-

tire CFS process, because most the geometry of interest is created from the

CAD/CAM package. However, when importing the geometry from a CAD/

CAM package, the engineer has to handle this geometry with all information
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pre-defined. Unfortunately, that predefined information may lead to unex-

pected surface grids. Taking the Figure 4.5 as an example, this surface is ob-

tained from the package CAT/A (a product of the IBM CAD system). The sur-

face is presented as a NURBS surface. From the Figure 4.5, one can see that

the control polygons are clustered in the middle of the surface in the J direc-

tion as well as the lower index of the I direction of the surface. The knot vec-

tors are set evenly in both I and J directions. These NURBS definitions (both

the location of control net and the setting of the knot vectors) make the surface

grid lines packing towards the clustered control nets. This unexpected and

undesired packing of the surface grid lines will produce a poor quality grid

which might result in a divergence of CFS simulation. The situation is re-

ferred to as "bad parameterization_,_ This is the first penalty one has to pay for

the geometry communication between systems due to an unexperienced CAD/

CAM designer. Also, the improper geometry definitions happen frequently

during this communication. Since the engineers from grid generation did not

participate in design_, the geometry when it was in CAD system, the chal-

lenge becomes finding a solution to obtaining the desired distribution without

altering the geometry shape as shown in Figure 4.6.

Another penalty is related to geometry manipulation. One of the

NURBS properties is tl_e 1_ control property which states that altering the

location of the control points or the values of weight will only modify the shape

of geometry locally. This local control property is very attractive to the design-

er because the modification will not ch_ge the entire geometry. However, im-

proper manipulation of the NURBS control points or weights may lead to poor

grid points (lines) packing, and this situation also results in "bad parameter-

ization _. Maintaining the desired shape of geometry (after changing the con-
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trol points or weights) and the proper geometric parameterization is challeng-

ing. Figure 4.7 shows the control net and the surface grid lines of a NURBS

surface aiter increasing the weight of one of the control points. One can see

that, the surface grid lines are packed toward the control points with in-

creased weight. The challenge of this problem is finding a better parameter-

ization without altering the desired shape of the geometry as shown in Figure

4.8.

Figure 4.5 Bad locations ofa NURBS control net.

Figure 4.6 A uniform distribution NIYRBS surface.



Figure 4.7 Improper manipulation leading to bad parameterization.
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Figure 4.8 Improved parameterization surface after re-parameterization.

Computation Intensive for NURBS Evaluation

The other complaint, which is not related to geometry communication,

for using the NURBS modeling is the computationally intense evaluation.

Given the control polygon d and weights W from equations (2.1)~(2.4), the

challenge for efficient evaluation is finding the basis function N_i (t) at particu-

lar value t as quickly as possible, since this basis function is defined recursive-

ly. Of the many approaches to evaluating the grid points on a NURBS entity,
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the "de Boor_ [Ref 18] method is the most commonly used. Even though many

computer languages, such as C and Pascal, allow the recursive call, evaluating

this basis function with an internal recursive call needs substantial memory

and computation time. Also, when the order(s) or the dimension of the

NURBS control points is high, especially for the case of a 3D NURBS control

volume, the evaluation will take significant computation time. Avoiding the

recursive call and quickly evaluating the grid points on a NURBS entity is an

important issue.

Strate_es for Overcomln_ NURBS Difficulties

The strategies for overcoming the problems associated with using

NURBS are presented in this section.

As one can understand from equations (2.1) ~ (2.4), the NURBS is de-

fined in a parametric format. Thus, any parametric value will create a physi-

cal grid point on a NURBS entity. Taking the NURBS curve as an example,

any value t in parametric space, which must be inside the domain of the knot

vector, will result in a point C(t) in the physical space. In other words, the

evaluation domain for any parametric value t must be located in the range of

the knot vector ofT, t E [Tk-1, ..., Tn+l]. The first problem m maintaining the

NURBS geometric fidelity, is related to the knot vector.

Maintaining the Sharp Corner with NURBS

In order to know how to maintain the fidelity of the geometry, it is nec-

essary to know the relationship between the NURBS entity and the knot vec-

tors. This is illustrated as follows: a NURBS curve has order equal to 3 and

control points a, b, c, d and e, as shown in Figure 4.9. Its associated knot vec-

tor is [0., 0., 0., 0.3333, 0.6667, 1., 1., 1.]. The points ml and m2 are the points
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evaluated with the parametric values t equal to 0.3333 and 0.6667 (notice that

these two values are exactly the same as the interior knot values of the knot

vector). The arc am1 is created from those parametric values located in the

first knot span [0., 0.3333], and the arc mlm2 is created from the parametric

values located in the second knot span [0.3333, 0.6667], while the last arc m2e

is created from the parametric values located in the last knot span [0.6667,

1.0]. In each knot span, the associated NURBS arc is a smooth curve. If the

knot value tl = 0.3333 increases, and the knot value t2 = 0.6667 decreases (but

tl _t2), then the arc mlm2 is _shrunk _. Before the tl and t2 values collide, the

segments are all C 2 continuously differentiable due to the order equal to 3. In

other words, in each arc segment, there is no discontinuous point. However, as

one can imagine, when the tl and t2 value collide, the arc mlm2 becomes a

singularity point, and the discontinuous problem may arise. It is well known

[Ref 23,34,44] that the continuity ofa NURBS entity at knot value t is equal to

(k-l-m) where k is the order and m is the multiplicity of the knot value.

Hence, if tl and t2 collide, then the multiplicity of this knot value becomes 2,

and the continuity is C(3-/-2) = C 0, which defines the sharp corner (discontinu-

ous point). This ai'tuation occurs when the two NURBS entities are joined to-

gether by the _composite _ algorithm described in chapter 2. In that algorithm,

the multiplicity of the knot value has been set to (order-I) in order to main-

tain the discontinuous portion.

Knowing the reason'forthe creationofthe sharp corner,the strategyfor

maintaining the discontinuous point isas follows:when the sequence ofpara-

metric values t/are generated, one should firstcheck the domain of the knot

vector (forthis example, the domain of knot vector [0.0,0.3333, 0.6667, 1.0]).

Ifany knot value T_ has multiplicitym which gives (k-l-m) equal to 0, then
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one should chose the parametric value tj with the absolute minimum differ-

ence of (tj - T_) and assign _ to tj. For example, if the knot vector for the curve

shown in Figure 4.1 is set [0., 0., 0., 0.25, 0.52, 0.52, 0.75_ 0.75, 1., 1., 1.0], and

the user would like to distribute 11 points on the curve with even spacing in

parametric space ( t/= 0.1i i---0, ..., 10), since T5 = T6 =0.52 (with multiplicity

equal to 2), then t5 = 0.5 must be adjusted to the value of T5 = T6 =0.52. The

same procedure should apply to the parametric value t7 = 0.7 (or t8 = 0.8, since

It7 -TT_ = I t8 -T7 [), updating it to the value ofT7 = T8 =0.7_ After this pro-

cess, the parametric sequence is ensured to maintain all possible discontinu-

ous points.

"b d

a e

III
Ill I I II1"

0 .3333 .6667 l.'b

Figure 4.9 The relationship between knot value and the NURBS curve.

It is necessary to add a "physical" checking algorithm to find out the

"real" sharp corners after the previous procedures. In many cases, the knot

value which has multiplicity greater than I does not intend to represent the

discontinuous point. For example, the circular arc shown in Figure 2.2 has the

knot vector set [0., 0., 0., 0.5, 0.5, 1., 1., 1.]. Even though the knot value 0.5

has the multiplicity 2, according to the previous discussion, it should have a

sharp corner because C (3-1-2) = C ° However, one knows there are no discon-

tinuous points in a semi-circle. There is no harm in setting any parametric
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values to the knot value 0.5, but to avoid taking the point M as the sharp cor-

ner, one should add a distinguishing algorithm described as follows: If t/is the

suspect parametric value which might create the discontinuous point, then

setting three additional parametric values t/-l, t/+l and t/+2, with tt-I slightly

smaller than t_, and t/+l, t_+2 slightly greater than t_ ("slightlf' can be defined

as the distance of t_ and tt-i to be 1.0e-7) will discourage discontinuity. Eva-

luating with these four parametric values will yield four points -- C(t/_z),

C(t/), C(t/+l) and C(t/+2) in the physical curve entity. These four points will

form two angles, 01 and 02, as shown in Figure 4.10. If the absolute difference

of these two angles is greater than the tolerance (for example, 50), then this

parametric t/is indeed a value which can create a real physical sharp corner.

c( 1)

C(t +1)

Figure 4.10 Definition of a discontinuous point.

Re-Parsmeterization Algorithm

The second and third barriers can be overcome by the re-parameteriza-

tion algorithm. This algorithm allows the user to determine the parametric

values which yield the desired distribution on physical NURBS entities. TWo

approaches are introduced: one is performed with an iterative method, and the

other is implemented by linear interpolation.
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Before discussing the algorithms, it is necessary to define several nota-

tions. For a NURBS curve with resolution ni, there are several 1D arrays

which need to be defined:

(1) cs1(i), i=1, ..., ni be the parametric values associated with the desired dis-

tribution of the curve in physical space;

(2) cs2(i), i=1, ..., ni be the normalized chord length of the curve with desired

distribution (for example, cs2(i) = (i-1)/(ni-1) for even distribution);

(3) cs3(i), i=1, ..., ni be the normalized chord length of the cu_e evaluated at

parametric values cs1(i), i=1, ..., ni.

The explanation of these 1D arrays are referred to Figure 4.3 and 4.4.

Consider the example shown in Figure 4.3. If the designer would like to have

the final curve as shown in Figure 4.4, then cs2(i) will be a 1D array which

contains the distribution packing evenly, and cs1(i) are the parametric values

which are to be determined, such that the cs3(i), the normalized chord length

of final curve, would be the same as cs2(i) (or [cs2(i) - cs3(i) [ be minimized for

all i=1,.., hi).

For the NURBS tensor product surface with resolution ni by nj, the 21)

arrays are defined as follows:

(1) (ssl(id), stl(i,j)), i=1, ..., ni, j=l, ..., nj be the parametric ch_tribution mesh

associated with the desired distrz%ution of the surface in physical space;

(2) (ss2(i,j), st2(id)), i=1, ..., ni, j=l, ..., nj be the normalized chord length of the

surface with desired distribution in direction I and J respectively;

(3) (ss3(id), st3(ij)), i=1, ..., ni, j=l, ..., nj be the normalized chord length of the

surface evaluated at parametric values (ul(i,j), stl(i,j)) iffil, ..., ni, jffil, ..., nj.

Consider Figure 4.7 and 4.8 as examples. If the designer would like to

have the final surface, as shown in Figure 4.7, then (ss2(id), st2(i,j)) would be a
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2D array which contains the even distribution, and (Ssl(i,j), st1(ij)) would be

the parametric values which are to be determined such that (ss3(ij), st3(ij)),

the normalized chord length of final surface, would be the same as (ss2(ij),

st2(ij)) or within certain tolerance.

For the NURBS tensor product volume with resolution hi, nj and nl, the

31) arrays are defined as follows:

(1) (Vsl(ij, l), Vtl(ij, l), vul(ij, l)), i=1, ..., ni, j=l, ..., nj and l=l, ..., nl be the

parametric distribution volume associated with the desired distribution of the

volume in physical space;

(2) (vs2(ij, l), vt2(ij, l), vu2(ij, l)), i=1, ..., ni, j=l, ..., nj and/=1, ..., nl be the

normalized chord length of the volume with desired distribution in direction I,

J and L respectively;

(3) (vs3(ij, l), vt3(ij, l), vu3(i,j,l)), i=1, ..., ni, j=l, ..., nj and/=1, ..., nl be the

normalized chord length of the volume evaluated at parametric values

(VSl(ij, l), vtl(ij, l), Vul(ij, l)) i=1, ..., ni,j=l, ..., nj and /=1, ..., nl.

The illustration of these 3D arrays are analogous to curve and surface

cases.

1> I_ration for Re-ParAm#t_ri,.Ation Algorithm.

The procedure for the reparameterization algorithm for a NURBS curve

is stated as follows: The first step is to initialize the values ofcsl(i) by setting

csl(i) = cs2(i). Once ¢s2(i) are determined, the second step is to evaluate the

NURBS curve using the parametric values of csl(i) and calculate the normal-

ized chord length, ¢s3, of this curve. Generally, cs3(i) will not be the same as

cs2(i). If any value ofcs3(i), say c,s3(/), is greater (or smaller) than cs2(I) by the

tolerance, because cs3(I) is obtained by evaluating the NURBS curve with the

parametric value of csl(l, then the value of csl(l) should be decreased (or in-
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creased if it is smaller). This process needs to be checked with all the values

ofcs2(/) and cs3(I) itoratively until all the differences of les2(i)- ess(i)l are all

within the tolerance for all i=l,..._ti. More precisely, the iterative algorithm

can be described in the computer pseudocede shown as Algorithm 4.1.

Algorithm 4.1

for (j=O; j<max_iteration; j++ ) {

check whether ]cs2(i)-cs3(i) ] < tolerance, O<i<ni

if (yes) break the for loop and program stop;

else

{
for (i=l;i<ni;i++) {

if (¢s_(i) < cs3(i))
CSl (i) += (cs2(i) - cs3(i))*(CSl (i)--CSl (i-1));

else

csi (i) += (es2 (i) - cs3 (i))*(csl (i + l)-csl (i));
}

Repeat Step 2.

The max_iteration and tolerance are set according to different request. If the

tolerance is set too small, the program needs more iterations. For the exam-

pies shown in Figure 4.3 and 4.4, the tolerance is set as 1.0e-6, and it needs 51

iterations.

The reparameterization algorithm for the NURBS surface is analogous

to the curve algorithm. The first step is to initialize the values of (ssi(iJ),

Stl(ij)) as the desired distribution mesh (s_(ij),st2(ij)). The second step is to

evaluate the surface with these parametric values to obtain (sas(ij), st3(ij)).

Then the normalized chord length of the entire surface is calculated for

(sss(ij), st_(ij)). Again, (sss(ij), sts(ij)) will be different than the desired dis-

tribution mesh of (ss2(ij), st2(ij)). The idea of adjusting the parametric mesh
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is simply the extension of 1D arrays of the curve to 2D arrays and is presented

in the computer pseudocode shown as Algorithm 4.2.

I

Algorithm 4.2

for (k=O; k<max_iteration; k++) {

check whether Iss2(i,j)-ss3(i,j)l < tolerance for O<i<ni, O<j<nj

if(no) {

for q--Oj<nj_/++)
for (i=l;i<ni-1;i++) {

if (ss2(ij) < ss3(iJ))

ssi (ij) += (ss2(ij)-ss3(ij))*(ssI (ij)-ssl (i-lj));
else

ssl (ij) + = (ss2 (ij)-ss3 (ij)) "(ssI (i + 1 j)-ssi (ij));
I

i
check whether Ist2(ij)-st3(ij) I < tolerance for O<i<ni, O<j<nj

if(no) {

for (i=O;i <ni;i ++)
for (jf ll]<nj-1;j++) {

if (st2(ij) < st3(ij))

stl (ij) += (st2(ij)-st3 (ij)j*(st l (ij)-st i (ij-1)) ;

else

st1 (ij) += (st2 (ij)-st3(ij)) *(st l (ij+ l )-St l (ij)) ;
t

1
if (both checking return yes)

break the loop and program stop.

else Repe_t S_p 2.

From this pseudocode, one can realize that adjusting the parametric

value in the I direction for ssl(ij) will effect the calculating ofstl(i,j), and ad-

justing the value for stl(ij) _ effect the calculating ofssl(i,]) too. This situa-

tion is easy to understand because the surface is defined as a tensor product

surface. However, due to this mutual effect, the convergence of the entire pro-

cedure needs more computation time that that of a curve. For the examples
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shown in Figures 4.7 and 4.8, the tolerance is set as 1.0e-5, and it needs 216

iterations for the 31 by 31 surface resolution. If the tolerance is set to 1.0e--6,

the number of iterations increases to 1500 iterations for the same resolution.

The volume reparameterization algorithm for NURBS can be extended

from 21) surface arrays to 3D volume arrays. However, since the NLrRBS vol-

ume is also defined as a tensor product format, adjusting the parametric val-

ues of any one of the directions (I, J or K) will automatically effect the calcula-

tion of :the other two directions. This situation makes it_difficult for the

algorithm to reach the convergence of a small tolerance, and it also greatly in-

creases the computation time for one iteration of volume evaluation. Due to

this drawback, the iterative algorithm is seldom utilized for the NURBS vol-

ume case. An alternative way for this algorithm is the linear interpolation

approach described in the next section.

2> Linear Interpolation for Re-ParnmeterizRti_'on Al__ori.thm_

For the curve case, in order to obtain cs3(i), the initial values ofcsl(i)

must be initialized. One can set csl (i) as evenly distribubsd initially, evaluate

the curve with these parametric values to obtain the final curve, then normal-

ize the entire chord length to obtain cs3(i). Generally, the cs3(i) will be differ-

ent than cs2(i). How does one adjust csl(i) to have new cs3(i) which is close to

cs2(i)? The entire procedure is described in the Algorithm 4.3.

Algorithm 4.3

for (i=1; i<(ni-1); i++) {

find the location ofj such that css(j) <_ cs2(i) < css(j+l).

let a = cs2(i) - cs3(13; _ ffi css(j+l) - cs2(i);

} cs(i) = (csl (j+l)*a + csi(jg*_) / (a + ID;
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The theory behind this pseudocode is the simple "linear-interpolation _.

The final cs(i) should replace csl(i) as the final desired parametric distribu-

tion. Using this distribution to evaluate the NURBS curve shown in Figure

4.3 will yield the result shown in Figure 4.4 -- which has the even distribution

(point packing) on the physical curve. The linear interpolation may not be

very accurate, especially when the resolution is very low. Therefore, if the fi-

nal curve does not achievethe desired distribution, one should repeat this pro-

cedure again. According to research experience, the result of this algorithm is

very satisfactory after 3 iterations.

For the surface case, the procedure is similar to the NURBS curve. One

can set (ssl (ij), st1 (i,j))as evenly distributed initially, then evaluate the sur-

face with these parametric values to obtain (ss3(ij), st3(iJ)). Most likely

(ss3(i,j), 8t3(i,j)) will be different than (ss2(i,j), st2(i,j)). The procedure to adjust

(ssl(ij), Stl(ij)) so that (ss3(ij), st3(ij)) can be as close as to (ss2(ij), st2(ij)) is

presented in Algorith m 4.4 as a computer pseudocode:

Algorithm 4.4

for (jfl;j<(nj-1);j++)
for (i=1; i<(ni-1); i++) {

search the index of L-'Jsuch that (ss2(ij), sts(ij)) is located within the
cell of (ss3(I, J),sts(I,J)), (ss3(I+l,J),st3(I+l,J)), (ss3(I, J+l),st3(I, J+l))
and (sss(I+ l,J+ l) _st3(I+ l, J+ l))

let (ss2(ij),st2(ij)) = (1-_)(1-_)(ss3(I, J),st3(l, J)) + (1--a)_(ss3(I, J+l),

st3 (l, J+ l))_+a( !-_ )(ss3 (l+ l, J), sts(I+ l, J))+a_(ss3 (I+ l, J+ l), st3 (I+ l,
J+l)) and solve for aand [3 ;

new (ss(ij),st(ijO) = (1-aXl-_XSSl(/, J), Stl(I, J)) + (1-a)_(SSl(/, J+ l),
Stl(I,J+l)) + a(1--_)(SSl(I+l, J), Stl(I+l, J)) + a_(sSl(I+l, J+l), Stl(I+l,

} J+l)); ...

One can verify that the bi-linear interpolation is used in this algorithm

for finding the new parametric values. Even this bi-linear interpolation is

more accurate than linear interpolation, but when the resolutions are not high
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enough, two or three iterations may be needed to improve the quality. ARer

this algorithm, the final ((ss(ij), et(ij)) should update ((ssl(ij), atl(ij)) and

then ((Ssl(ij), 8tl (ij)) is the desired distribution mesh in which to generate the

desired surface grids shown in Figure 4.8. In this algorithm, the Newton

method [Ref 19] is used for solving the non-linear equation for multi-vari-

ables a and _.

ARer knowing how the algorithms work for curve and surface, the algo-

rithm for the volume is analogous. The only thing different is that the trili-

near interpolation should be used for solving the equation (4.1) by Newton it-

eration for variables a, _ and ¥.

(v 2(iJ l) vt2(iJ l) vu2 vu3

LJ, L),vt3(l+l,J,L),vu3(1+ l,J,L))

+(1-a )_(1-_/)(v s3 (1,J + l,L), vta (1,J+ l ,L), vu3 (I,J + l,L))

4) (1-p)y(vs3 (1,J,L+ l), vta(1,J,L+l), vu3(1,J,L+l))

+ap(1-_,)(vs3 (I+ I,J+ I,L), vt3 (1+l,J+l,L),vu3(1+l,J+l,L)) (4.1)

+a (1-_)7(vs3 (1+ l,J,L+ l), vt3 (l+ l,J,L+ l), vu3 (I+ l,J,L+ l))

+(1-a)/_/(vs3(1,J+ l,L+ l),vt3(l,J+ l,L+ l),vu3(1,J+ l,L+ l))

+a_(vs3 (1+ l,J+ l,L+ l),vt3 (1+ l,J+ l,L+ l), vu3(I+ l,J+ l,L+ l))

After a, _ and ¥ are obtained, the new parametric values are.determined as

shown in equation (4.2). _:

(vs(ij,1), vt(ij,1), vu(ij,1))--(1-a)(1.._)(1._)(vsI (l,J,L), Vtl (1,j,L), vu l (I,J,L))

+a(1--_)(1-y)(VSl (I+ l,J,L),Vtl (I+ l,J,L),vui (l+ l,J,L))

+(1-a)_(1--_)(VSl (1,J+ l,L),vtl (I,J+ l,L),vul (1,J+ I,L))

+(l-a) (1-_)y(VSl (I,J,L+ l), vt l (1,J,L+ l), vu l (1,J,L+ I ))

+_(1-_,) (vsl (1+ l,J+ l,L),vtl (1+ l,J+ l,L),vul (1+1,J+ l,L))

+a(1-p),/(osl (l+l,J,L+ l),vtl (l+l,J,L+l),vu (1+1,J,L+l))

+(1-a)t_/(VSl (1,J+ l,L+ l),vtl (l,J+ l,L+ l),vul (1,J+ l,L+ l))

+at_(usl (1+1,J+1,L+1), vtI (1+1,J+1,L+1), vu l (1+1,J+ l,L+1))

(4.2)
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This approach, compared to the volume case of the iterative algorithm, is

much less computationaUy expensive.

Figure 4.11 and 4.12 show the results for a volume grid re-parameter-

ization algorithm.

Figure 4.11 A volume grid with undesirable packing.

Figure 4.12 A volume grid with desirable packing after re-parameterization.
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Sin_mlarity Control

As one examines these re-parameterization algorithms, one can easily

find out that there is a serious flaw which may lead these algorithms to fail.

This flaw is related to the _singularity _ problem. Taking a NURBS curve as an

example, if all the points on this curve collapse to one point, then this NURBS

curve is a singular curve. The same definition can be applied to NURBS sur-

face and volume. If any of the iso-parametric line on a NURBS surface col-

lapses to. one point, then this line is defined as singular _ For a volume, if

any of the iso-plane on a NURBS volume collapses to a line, then this plane is

defined as singular plane. When these singularity problems occur, the total

arc length from calculating it according to the re-parameterization algorithms

will be zero. Since the normalized arc lengths are obtained by dividing the

total arc length to the individual ones, this will lead to the operation of 0/0

which is mathematically undefined and can not be implemented by any com-

puter language. These singularity problems happen in many cases. For ex-

ample, the surface grid which represents the canopy of a aircraft has a singu-

lar line at the nose position; a surface grid which represents the missile has a

singular line in the nose position; and the volume grid of_a cylinder (or any

cylindrical pipe) has a singular plan at the axial direction. _From these exam-

pies, one notices that the singularity problems eccttred because the control

points collapse to one point (for the surface case) or one line (for the volume

case). While evaluating the NI.JI_S entities with certain parametric values

by utilizing these collapsed control points, the singularity problem arises.

Hence, it is necessary to enhance the algorithms to handle this problems.

The strategy of the enhancement algorithm is related to the machine

accuracy (or called machine precision). The machine accuracy, commonly rep-
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resented as symbol e, is defined as the smallest positive real number such that

1 + e > e. On the Silicon Graphics Personal Iris, this number is equal to 1.0 -16

(double precision). In many numerical simulations, this number is needed to

represent the finite precision arithmetic of the computer architecture. For ex-

ample, the stopping criteria of an iteration scheme is dependent upon the ma-

chine accuracy. A variable expected to be zero in numerical representation

may not be reached due to the finite precision of the computer memory repre-

sentation. Hence, in many numerical applications, _the exact zero is replaced

by a value related to e, say if a variable is less than _/_, then this variable is

assumed to be equal to zero. This concept is also utilized to avoid the singular-

ity problems. _ddng the example of the NURBS surface with a singular line

shown in Figure 4.13, the grid line evaluated with the parametri'c values of

(ssl (Oj), stl(Oj)j--O, ..., nj will shrink to one singular point due to the control

vertices doj _llapsing _ 0ne point, However, if one perturbes these paramet-

ric values by a small values, say _e, and then re-evaluates the surface, the

returned grid line will not be the same as the singular one since these para-

metric values are no longer exact zero. Instead, it will return a grid line with

a small but recognizable total arc length. Even though the total arc length is

small, the normalization process will make the values of (ss3(Oj), st3(Oj)

j--0,...,nj to 0.0 ~ 1.0 and will avoid the uncertain situation of 0/0. This proce-

dure is shown as the Algorithm 4.5.

Algorithm 4.5

for (j=O; Y++)(
ssl (Oj) += e; ssl (ni-lj) -= s;

}
for (i--O; i<ni; i++) {

+= st (i, nj-1) -= e;
}
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Figure 4.14 illustrates the result of this algorithm applied to a NURBS surface

with a singular line.

Figure 4.13 A NURBS surface with a singular line.

Figure 4.14 Reparameterization for a NURBS surface with singularity.

The associated approach can be applied to 3D NURBS volume. These

_offset _ procedures for the 3D parametric values can be summarized in Algo-

rithm 4.6. Figure 4.15 shows a 3D _S cylindric pipe evaluated with even

parametric values. Notice that in its L direction, the surface degenerates to a

singer line. The result of reparameterization for this volume is shown in Fig-

ure 4.16.



.Algorithm 4.6

for (k--O;k<nk; k++)
for (j---O; j<nj; j++) {

vs1(Oj, k) += _; vsi(ni-lj, k)-= _,

}
for 0_=0; k<nk; k++)
for (i=O; i<ni; i++) {

vtl(i,O,k) +ffi e; ctl(i, nj-l,k) -= £;
}
for (jffiO;j<nj; j++)
for (i=O; i<ni; i++) {

VUl(ij, O) += _ vul(ij, nj-1) -= E;
}
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Figure 4.15 A NURBS volume grid with a singular plane.

Figure 4.16 Reparameterization for a NURBS volume with singularity.



106

Effident Evaluation for NURBS Entity

As it was described in the beginning of this chapter, using the intrinsic

computer recursive call for evaluating the NURBS entity is the worst choice.

Currently, the "de Boor _ algorithm [Ref 18,23], which is based on the geomet-

ric construction, is widely utilized. The illustration of this algorithm is dem-

onstrated with a BSpline curve, which has the same curve configuration as

shown in the Figure 4.17.

Figure 4.17 mustration of the de Boor algorithm for a NURBS curve.

Before discussing the evaluation of a NURBS curve, the BSpline curve

should be introduced first. The definition of the BSpline curve is similar to the

NURBS curve except the weights are all equal to 1. Accordingto the property

of the basis function, if all the weights are the same, the denominator term of

the equation (2.1) will sum to 1. Hence, the BSpline curve is presented as

equation (4.3).

m

i=O
(4.3)

If one would like to evaluate t _0.5 for this curve, the first step is locat-

ing the proper knot span such that _ _< t < T/+I for the knot vector T. For this



107

case, the I would be 3 since the knot vector is set as [0, 0, 0, 0.3333, 0.6667, 1,

1, 1]. The second step is mapping the ratios of 7'2 : 7'3, 7'3 : t, t : 7'4 (let these

ratios be a, _ and 7) and the ratios of T3 : t, t : 7'4, T4 : T5 (6, Y and a) to the

proper control polygon shown in Figure 4.17. This mapping will yield two in-

termediate points do1, d 1. The third step is mapping the ratio of T3 : t and t :

1 1
7'4 to the line of dod r The intermediate point created after this step is the

point on the curve at parametric t. These procedures are demonstrated on

Figure 4.17.

The algorithm for obtaining all the intermediate points and the final

point on a BSpline curve (with order equal to k) for a particular parametric

value t can be summarized as Algorithm 4. 7.

Algorithm 4.7

find out the index I such that 7'[1] <.

for (r=-l; r_ (k-1)_ r+÷)

for (if I- (k-l); i _<(/-r); i++)

= (T[i + k] - t) r-1(T[i ¥-ki + r]) +

t < T[I+I].

(t - T[i + r]) r-1
(T[i + k] - T[i + r]) di+l

The evaluation of a NURBS curve by the "de Boor" method is related to

_nomogenization _. The 4D control vertices d*= [ dzw, dyw, dzw, w ] are ob-

tained by multiplying the weights to the corresponding 3D control polygon [d=,

dy, dz], and these new control verticosd*(including the weights) are called the

4D homogenous coordinates. Performing the "de Boor _ algorithm to these 4D

control poly_ns for the particulate parametric value t will yield a new 4D

point C*(t) = [ d/z w/, d/y w/, d/z w/, w/]. The corresponding point of C*(t) on

3D space is then obtained by _inhomogenizing" the 4D point and is accom-
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plished by dividing the C°( t ) with the last component, u_. Hence, the 3D

point C(t) - [ di_(t), diy(t), d=(t)].

The definition of the BSpline surface is similar to NURBS definition.

The only different is the weights of the BSpline surface are all same. This

leads the denominator term of equation (2.3) vanish [Ref 34,44]. Hence, the

formula is represented as equation (4.4).

n m

S(s,t) = _ _ d_ N_I(s) N_2(t) _ (4.4)
j-Oi-O _

Since the BSpline surface is also defined as a tensor product surface, the equa-

tion (4.4) can be rewritten as equation (4.5).

d(/N_/l(s N_2(t) _ d_ N_j2(t) (4.5)
jffi0U=0 jffi0

This equation shows that the evaluation of a BSpline surface can be ac-

complished by applying the BSpline curve algorithm to the isoparametric

curves in I direction to obtain the intermediate control points, and then treat

them as the isoparametric control polygon in J direction, applying the curve

algorithm to these control polygons to obtain the final BSpline surface. In oth-

er words, the surface algorithm is implemented by applying two of the curve

algorithms.

The detailed implementation of the NURBS surface can be found in

Farian's [Ref 23,34,44]. Basicall_ one should apply the _homogonization" to

obtain the 4D control vertices d._ = [dx0w_, dy(iwo., dz_(i, w_J, then treat

these new control vertices as the control points of a BSpline surface and per-

form the BSpline evaluation algorithm in 4D space for the particular paramet-

ric values. Finally, project the values back to 3D space by '_lhomogonizing'.



109

The evaluation of NURBS volumes by _de Boor _ algorithm can be ex-

tended analogously. Compared to the method using the recursive call imple-

mented in many computer languages, this approach avoids the recursive call

and imbeds the evaluation of the basis functions to the entire process. The

evaluation process is much faster. Also, the geometric construction process

helps the user to know how the points are generated. Many software packages

adopt this algorithm. For example, the NGP (National Grid Project) [Ref

29,71] used this approach to evaluate the NURBS entities.

Even though the computation of the "homogenizing _ and _inhomogeniz-

ing _ of the _de Boor" algorithm is not very expensive, it is an extra cost for the

entire process. Also, the algorithm requires the iterative process repeated for

evaluating the x, y, z and w components. Examine the equations (2.1) - (2.4)

thoughtfully. One should know that after the basis functions are evaluated,

the control points reg_ "_ the x, y, z components can share these basis func-

tions without repea_d calculation, The detail approach is described as fol-

lows:

Consider all the basis functions of the NUEBS curve shown in Pigure

4.9. Acco_ to equation (9..2), those basis functions can be plotted as shown

in Figure4.Z8.
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Figure 4.18 Non-zero quadratic basis functions.

From Figure 4.18, the first basis function exists in the knot span [0.0,

.3333], and second basis function exists in the knot span of [0.0, .6667], and so

forth. Also, notice that in any of the knot span, the non-zero basis functions

sum to 1. For example, for parametric value t = .3333, the basis functions

N_l(t) + N_2(t) + /_s(t) - 0.5 + 0.5 + 0.0 = 1.0. This situation also indicates

that the number of non-zero basis functions in any of the particular knot span

is equal to the order of the curve (3 for this case). (Even though/V_8(t) is zero at

t = 0.3333, but as t slightly increases, this basis function becomes non-zero.)

Due to the local control property, one can also understand that not all the con-

trol points are involved for a particular t, only 3 (equal to the order of this

NLTRBS curve) control points are used for the evaluation. For example, if the

parametric value t is located in the knot span [0.0, .3333], the control points of

do, dl and d2 are used, flit is in the knot span [.3333, .6667], the control points

of dr, d2 and do are used, if it is in the knot span [.6667, 1.0], then the control

points of do, d3 and d4 are used. Generally, if the parametric value t is located

in the knot span of [7}, 7}+1], then the control points of dl-(order-1),
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df-(order.-Z)+1, ..., dl are involved for the evaluation. This statement can also be

applied to the NURBS surface and volume. Thke the surface as an example: if

the parametric values (s, t) are within the criteria of 7'11I] <<.• < TI[I+I] and

T2[J] <_ t < T2[J+I], then the control net involved for the evaluation is in the

region Of dl+i,J+j where i = I- (order_i - 1), ..., I j = J- (orderj- 1), ..., J. The

volume can be extended analogousl_

With this knowledge, the evaluation for the NURBS entity is fairly

straightforward. If the user would like to evaluate a NURBS curve for ni

points with parametric values ti i--O, ... ni-1, then the evaluation procedure for

this NURBS curve (with order k and the control polygon d/i=O, ..., n) can be

presented by Algorithm 4. 8.

Algorithm 4.8

!

for (i=0; i<ni; i+÷) {

I = locate the proper knot span for t[i];

find all non-zero basis functions, B[O:k-1];

varl = var2 = vat3 = var4 =0.0;
for (j---0; j<k; j++) {

varl += w[j+I-(k-1)] x BO"];

vat2 += W[j+I-(k-1)] x dx[j+I-(k-1)l_BfjT;
var3 += wfj+l-(k-1)] × dyfj+I-(k-1)]_fjT;

oar4 += w_+I-(k-1)] x dz[j+I-(k-1)3kB[17;

curx[i]=var2 / varl; cury[i]fvar3 I varl; curz[i]fvar4 / varl;

From Algorithm 4.8, one can understand that when the non-zero basis
..,.: • . •

functions are obtained for the parametric value tZ in the particular knot span,

then only k (order of the curve)operations are needed te evaluate the point of

C( ts ). Compare to the _de Boor _ geometric construction, this algorithm is

more intuitive and easy to understand based on the equation (2.1).
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The other advantage of this approach is that it is fairly easy to extend

from the 1D curve case to higher dimensions. Since the NURBS surface and

volume are all defined by the tensor product form, the corresponding algo-

rithms for the surface and volume are shown as Algorithm 4.9 and 4.10, re-

spectively.

The NURBS information ( the order(s), the control vertices, the weights,

and the knot vector(s)) is all given in the Algorithm 4.8 ~ 4.10, the only chal-

lenge leit for a fast computation is obtaining all the non-zer_basis functions

efficiently in the particular knot span. Indeed, the evaluation of the recursive

defined basis functions is the key point of Algorithms 4.8 ~ 4.10.

Algorithm 4.9

for(j=O;j<nj;j++)

for (i=O;i<ni;i++) {

I = locate the proper knot span for s[i][.l'];
J = locate the proper knot span for t[i][jT;

find all non-zero basis functions, Bi[O:kl-l], Bj[O:k2-1];
varl = rare = var3 = var4 --0.0;
for (jj=0; jj<k2; jj++)
for (ii=0; ii<kl; ii++) {

varl +=w[ii +I-(kl-1)][jj+J-(k2-1)]xBi[ii]xBj[jj];
var2 +ffiw[i i+ I-(k l -1)][jj _-(ke-1)]_tx[ii + l-(k l-1)][jj +J-(k2-1)]x

Bi[iijScBj[jj];
v a r3 + =w [i i+ l-(k i -1)][jj +J-(ke-1) ]xd y [i i+ I--(k l -1) ][jj'+J--(k2-1)]x

Bi[ii]'/,By[jj];
var4 +=w[ii +l-(kl-1)]_+J-(kz-1)_ii +I-(k l-1)][jj+J-(k2-1)fl<

} Bi[ii]'_j[jJT;

sur_i][JTfvar2 / varl; sury[i][jTfvars / varl ; sur_i ffJTffivar4 / varl;
}
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Algorithm 4.10

for (1=0; l<n/; l++)

for (jffi0; j<nj; j++)
for (i=0; i<ni; i++) {

locate the knot span/, J, L for s[i][jT[l], t[i][jT[l], u[i][j][l];

find all non-zero basis functions, Bi[O:kl-1], Bj[O:k2-1], Bl[O:k3-1];
varl = var2 = var3 = uar4 _0.0;

for (]I=0; ll<k3; ll++)
for (jj=0; jj<k2; jj++)
for (ii=0; ii<kl; ii++) {

varl +=w[ii +I-(kl-1)J[jj+J--(k2-1)J[ll +K-(k3-1)j_<Bi[ii]><Bj[jj]><Bt[ll];

var2 +fw[ii +I-(kl-1)][jj+J-(k2-1)]><Bi[ii]><Bj[jj]><Bt[ll]><
dx[ii+I-(kl-1)][.jj+J-(k2-1)][ll +L-(k3-1)];

var3 +=w[ii +l-(kl-1)][jj+J--(k2-1)]'/_[ii]><Bj[jjfl<Bl[ll]x
dy[ii +I-(kl-1)][jj+J-(k2-1)][ll +L-(k3-1)];

v a r4 + = w [i i+ I-(k l -1) ][jj +J_Tc 2-1) ]x Bi[ i i]x Bj [jj]>_l [ll ]x
dz[ii+I--(kl-1)][jj+J--(k2-1)]><[ll +L-(k3-1)];

}
sur_i][JT=var2 / varl ; sury[i][JTfvar3 / varl ; surz[i][JTfvar4 / varl ;

}

An efficient evaluation of the basis functions was first presented in de

Boor's [Ref 18]. This approach was implementedby an iterative (non-recur-

sive) approach. This evaluation process is briefly discussed as follows:

Based on the previous observation, one knows that for a NURBS curve

with order equal to k, if the parametric value t is located in the knot span I

such that T/ _< t < T/+I, then there are at most k non-zero basis functions.

Also, according to equation (2.2), one knows a basis function of k order is de-

fined by the combination of two basis functions with k-1 order. These two

facts conclude to the relationship, shown as Figure 4.19, of all the non-zero

basis functions with all possible orders for the parametric value t in the knot

span I.
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Figure 4.19 Nonzero BSpline basis functions on [T/, T/+I]
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In each column of Figure 4.19, there are exactly k non-zero basis func-

tions, and any basis function in thejth column is obtained by the combination

of two other basis functions in the j-lth column. Also, notice that when com-

puted the basis functions _ and/_j+ 1 in the_ column, the fact that one of

their neighbors to thej-lth column is zero is utilized. For example, when cal-

culating ._/, the NI_ 1 is zero, and when calculating N?_I, the N1+1 is zero.

In addition to this, there exists a simple relationship between all the non-zero

basis functions in thejth column. Takej equals 3 (order equal to 3) as an ex-

ample, according to equation (2.2), these non-zero basis functions can be

listed as follows:

(Ti+_ - t )___..
x(t) + .... _v_t)

- Ti+2- T i

(t- Ti_ 1 )

_/_l(t) -- Ti+l- Ti_ 1

(4.6)

(4.7)



N3(t) = (t- Te ) (7i+ a -t ),N_÷ _(t)
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(4.8)

1 _ 1 which appears in the second
The relationship is that the Ti + 1 - Ti-1 -

term of equation (4.6) also appears in the first term of equation (4.7). Similar

results also can be applied to equations (4.7) and (4.8). Furthermore, two

qualities are introduced and shown as equation (4.9) and (4.10).

6_left(j) = t- _+l-j (4.9)

5_rightO') = _+j- t (4.10)

This simple relationship can be presented in a clearing fashion by applying

equations (4.9) - (4.10) to equations (4.6) - (4.8). The re-formed equations

are shown as equations (4.11) ~ (4.13).

/_ s = _.../efl(3) N?. a_,--/gh_..t(1)) .
- a_right(O) + a_/ep(8) _-2 + a_r/ght(1) + a_/eft(2) _-1

N3._1 ffi a../eft(2) _ (__r/gh_t(2). N?
a_right-'_ "+ __/eft(2)' i- ! + a_r/ght(2) + a_/eft(1) i

a,tep(1) _. a,right(3) _.
N_i ffi a_righ_-_'_left('l) i +'_ "_righ--_ + h_left(O) i+ 1

(4.11)

(4.12)

(4.13)

Equations (4.11) ~ (4.13) provide the intrinsic understanding for an eft]-

cient evaluation of all non-zero basis functions for a parametric value t in the

knot span of [_, _+i]. This efficient evaluation process, which utilizes an it-

erative approach, for these non-zero basis functions is listed as Algorithm

4.11.



Algorithm 4.11

basis[0] = 1.0;

for (j=0;j< order;j++) {

delta_l[/] = t - knot[/+l-j];

delta_r[/] = knot[/+j] - t;
save = 0.0;

for (i------_;i<j; i++) {

term = basis[_ / ( delta_r [/+1] + delta_life/I;
basis[i] = save + delta_r [i+1] * term; ....

save = delta_l _-i] * term;
}

basis[/] = save;
}
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Currently, CAGI (Computer Aided Grid Interface) applies Algorithm

4.11 to Algorithms 4.8 ~ 4'.10 for evaluating the NURBS curves, surfaces and

volumes.

Compared to the different evaluation approaches discussed in this sec-

tion, the recursive algorithm needs the most computational time. The geomet-

ric construction of _de Boor _ method is currently the one used most for many

packages [Ref 21,28,44]. However, the one adopted in CAGI is the most effi-

cient algorithm m both in memory and computation time. The reasons for

this is that it avoids the processes of _nomogenization _, _inhomogenization _,

and also when the non-zero basis functions are obtained, these non-zero func-

tions can be applied to any coordinates (x, y and z) without repeating the same

iterations. Besides these advantages, it is the easiest to extend to any higher

dimensions. In order to compare the computation speed for different evaluat-

ing approaches, a C program is implemented for the test. This program is

executed in a personal IRIS machine which has _2000A/R3000 _ processor

chip, 56 Mbytes main memory and 64 Kbytes of cache. Let the algorithms
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adopted in CAGI be denoted as algorithm A, and the "de Boor" be denoted as

algorithm B, Tables 4.1 and 4.2 show the CPU time required for algorithms A

and B for different NURBS curves and surfaces.

Table 4.1 Comparison time for evaluation of NURBS curves.

order resolution

(np)
control point

(n)
CPU time for A
(microseconds)

CPU time for B
(microseconds)

4 1000 5 49333 128000

4 5000 5 248000 650000

6 1000 18 93000 293000

6 5000 18 464500 1478250

Table 4.2 Comparison time for evaluation of NURBS surfaces.

4, 3

reso/utions

nj)
100,100

control net
(m, n)

5, 3

CPU time for A
(seconds)

0,4650

CPU time for B
(seconds)

79, 23..0

0.5710

4,3 500,500 5,3 11.719 18.509

12, 10 100, 100 3.7690 46.398

500,500 92.73979,23012, 10 562.068

The command _getrusage _ was used to measure the CPU time needed.

The CPU time was obtained by repeating the same case for 3 times and then

•averaging the total time spent.

From the results shown in Table 4.1 and 4.2, one can observe that the

two methods are very completive when the orders, resolution and control

points are low. However, the CPU time needed for algorithm A is much small-
.......

er than that of algorithm B while the orders, resolutions and control net are

highly increased.
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As is aforementioned, the ]_J'RBS representation is beeomeing the

standard for geometry description in CAD/CAM design systems. In addition,

because of its properties, I_RJP_BShas been used for modeling objects in many

areas, such as the manufacturing industry, entertainment industries, art and

even modeling the scenes for virtual reality applications. In terms of numeri-

cal grid generation and CFS applications, the difficulties and barriers of using

NURBS_must be solved to encourage the CFS community to Utilize this model-

ing technique. These problems discussed in this chapter are important. If the

volume grids generated by NURBS can not maintain the geometry fidelity,

then the CFS algorithm simply solves the different (or wrong) problems. The

distribution control on grid points and the bad parameterization problems are

highly related to grid quality m which has a direct influence on the flow con-

vergence rate and solution precision. A grid with bad quality may even lead to

the divergence of the CFS simulation results. Even though the computational

ability has been improved for many different _ of computers, a fast, robust

and efficient evaluation for NURBS is required to facilitate the grid genera-

tion process. This is especially true when handling high resolutions moving

grids (or moving boundary problems) which require fast evatuation in each

time step.



CHAPTER V

NURBS IN DYNAMIC GRID GENERATION

After discussing the difficulties of utilizing NURBS and the associated

overcoming strategies, one can fully apply the NURBS to many CFD simula-

tions. As is discussed in previous chapters, the reparameterization algorithm

allows the user to control the distribution of the grid points (lines) in physical

space. This is useful for the surface (volume) grid refinement, particularly for

the application of grid adaptation. The approach used here is different than

that in Yang's [Ref 83,84]. In Yang's work, the BSpline interpolation is used

for the iso-curve interpolation, while in this application, the entire distribu-

tion (adaptive) mesh / volume is utilized for the new adaptive grids. The inter-

polation involves the accumulation of numerical errors which may lead to the

losing of the original geometry definition, especially for the viscous turbulent

flow simulations. In addition, this interpolation is utilized for the entire sur-

face grid by iso-curve interpolation, it will be a computational intensive work

if the resolution of the surfacogrid is high. The approach used in this applica-

tion will avoid these challenges. The computational examples are presented

in this chapter.

An efficient grid generation with a good quality grid is important for

most CFS simulations. This is particularly true for the unsteady deforming

geometry type of simulation. For this type of problem, there is a need to gen-

erate the grid at each time step. If the grid generation is not efficient, a sig-

nificant part of the computation time will be used for generating the grid. Also
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if the grid quality is not satisfactory, the final results may not be accurate, or it

may take more time for convergence. Hence, the grid generation procedure

plays an important role in this type of simulation, l_tn_BS is a good candidate

for generating grids for this type of problem. The reasons for this are the

parametric formula of NURBS can easily rebuild the geometry, and the robust

evaluation algorithm described in the previous chapter makes the generating

grid efficient. Many NURBS geometries are constructed by very concise con-

trol polygons (control net or control volume). This means that comparing the

grid sizes, the size of the NURBS control net is much smaller than that of the

entire grids. And the NURBS local control property allows the geometry to be

locally modified without altering the entire geometric shape. If there is a need

to create a local deforming geometry, it is ideal to perform the deformation to

the NURBS control points. Since the resolution of the NURBS control net is

smaller, it does not take much computational time to apply perturbations to

the geometry. In addition, the reparameterization algorithm provides a de-

sired distribution on the deformed geometries t6 maintain the grid quality at

different time steps. Also, the grid smoothness can be achieved by the com-

bination of the proper NURBS orders and knot vectors. This is because the

continuity of the NURBS en_ty is determined by the associated order and

knot vector and is equal to C(k-l-m) where k is the order and m is the multiplic-

ity of the evaluatedknot value. These applications can be found in the moving

grid example and the temporally deforming geometries. These issues are dis-

cussed as follows:

Grid Adaptation

Since the re-parameterization algorithm can control the grid packing

on the geometry in physical space, its application can then be used for the grid
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adaptation. This is demonstrated by Figures 5.1 - 5.5 which show a 2D

NURBS surface grid modeled for simulating a supersonic flow over an oval-

type object. A NURBS control net is generated to model the 2D flow field con-

figuration. As it was discussed in chapter 2, a circular arc can be represented

by NURBS with very few control polygons. For a semi-circular arc with a ra-

dins r, as shown in Figure 5.1, the 2D control points are (counterclockwise)

(r,0), (r_'), (0_'), (-r_r) and (--r,0), while the corresponding weights are 1,

cos(45°), 1, cos(450) and 1. The knot values are (0, 0, 0, 0.5, 0.5, 1, 1, 1) with

the order set to 3. In order to simulate the flow passing through the oval-type

object, one can apply the algorithm described in Piegrs [Ref 42,43,44] for the

semi--ellipse. However, the easiest and simplest way to model this conic arc

(the ellipse) is by utilizing the _scaling _ operation: since this r is not fixed,

another semi--circular arc can be created with radius r' such that r" < r while

keeping the weights, knot values and the order unchanged, then "scaling _ the

entire control polygon by scaling the x and y components of each control point

by (a/r, b/r) _ yielding a new control polygon (a,0), (a,b), (O,b), (--a,b) and

(--a,0) of the semi-ellipse, hence, the semi major is a and semi minor is b. Af-

ter these two NURBS curves are created, one can perform th_'?NURBS Ruled _

surfacei algorithm (described in Chapter Two) to generate th_surfaco grid for

the flow field simulation. The NURBS information of this surface is listed in

Appendix B for reference. Supersonic flow at Mach number 3.0 is applied to

this geome_,. After the initial grid is generated, the NPARC flow simulation

code [Ref 16] is used to create the initial solution. These examples are demon-

strated in Figures 5.2 and 5.3.
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r

Figure 5.1 NURBS curves for semi--circle and ellipse.

Figure 5..2 NURBS control net with the initial surface grid.
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0.00 2.16 4.31

Figure 5.3 Initial solution (Mach number plot).

After obtaining the initial grid and solution, the adaptive program

"GAGE21T' by Yang [Ref83,85] is used for calculation of the distribution mesh

and the weight functions. GAGE2D was modified, however, with this new ap-

proach for full NURBS evaluation. The idea is that ai_r the adaptive code

calculates the adaptive mesh, instead of interpolating iso--curve line by line,

the re--parameterization algorithm is utilized to generate a new surface grid

which can reflect the adaptive mesh to the physical space. Figures 5.4 abd 5.5

show the adaptive grids _ (with NURBS control net) and the corresponding

solutions after the adaptive iterations.

Similar to this 2D case, a 3]) NURBS control volume is used to model a

missile for flow simulation. The 3D NURBS control volume and the initial

grid for this generic missile configuration are shown in Figure 8.6. This con-

trol volume is generated by creating two NURBS surfaces - one for the missile
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Figure 5.4 NURBS adaptive grid (first iteration).

/

!
o:

I" •"
i•

/Io o°•

f

o•_•
•.

/
,. °

.°
.°

0.00 :' 2.12 4.24

Figure 5.5 Adaptive solution (first iteration, Maeh number plot).
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configuration and the other for the outer free stream surface. The _uled vol-

ume _ algorithm is then applied to these two NURBS surfaces for constructing

the final control volume. Supersonic flow at Mach = 2.5 and 14 degree angle of

attack is applied to this geometry. Because of the simulation of the angle of

attack, there is no need to generate a symmetric grid around the body. Hence,

the NURBS control volumeshould not be symmetric in the circumferential

direction' The outer free stream NURBS surface was odginall_created from a

surface _f r_volution algorithm. In order to model a non-symmetric surface,

half of the control net must be reduced by a scaling factor. , however, re-

suits in the initial grid with the uneven distribution in circumferential direc-

tion (K direction) even though the even parametric values are used. One

should be able to observe this .bad parameterization _ situation from Figure

5.6.

Figure 5.7 presents the flow solution obtained from NPARC [Ref 16]

flow solver with the Baldwin-Lomax algebraic turbulence model option. This

Figure shows a streamwise cut of the initial grid and solution. The grid size

for this simulation is set as 121 x 89 x 89.

Similar to the 2D adaptation case, the adaptive volume (the new para-

metric values) is calculated according to the the initial solution. Unlike the

approach of line by line interpolation used for obtaining the adaptive grid in

Yang's [Ref 83,84] and Thornburg's [Ref 67], the 3D re-parameterization algo-

rithm.is utilized, along with this new adaptive volume, to obtain the final

aclaptive volume grid. Figure 5.8 shows this adaptive volume grid in the per-

spective view. This re-parameterization technique provides the capability of

precise grid distribution control and also m_inf_inR the geometry fidelity. One

can notice that the "bad parametrization _ shown in Figure 5.6 has been fixed
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Figure 5.6 NURBS control volume for a generic missile configuration.

J

Figure 5.7 Initial grid and solution (Math number plot).
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after the adaptive procedure. The adaptive grid and solution in streamwise

cut are shown in Figure 5.9. Figure 5.10 presents the adaptive solution with

the NURBS control volume in the perspective view.

Figure 5.8 Adaptive grid in perspective view.

Figure 5.9 Adaptive grid and solution (Mach number plot).
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F.4

Figure 5.10 Adaptive solution in perspective view.
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Tem_uorallv Deforming Geometry_ Model by NURBS

Unlike the other geometric representation, NURBS allows the engineer

to modify the geometry locally by changing the associated control points or the

associated weights. This property is called the _local controF property. The

other geometric representations, such as the Bezier and cubic spline entities,

do not have the similar characteristics. Hence, if one changes the control

points .of the Bezier curve or the coefficients of a cubic splin_surface, the en-

tire geometry will change. This NURBS local control property attracts many

designers because it provides the flexibility to model the geometric shape easi-

ly. Figure 5.11 demonstrates this property. This figure shows the original

NURBS surface and the NURBS surface with the perturbed control point.

One can .observe that after the control point is perturbed, only the local surface

is effected.

Figure 5.11 NURBS local control property.

NURBS can model some physical phenomenons by utilizing this local

control property. For instance, by properly changing the location of the control

polygons, the NURBS can be used to model the wave propagation. As is dem-

onstrated in previous chapters, many of the geometries modelled by NURBS
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have a smaller size of control polygon (net or volume) than that of the

associated grid points. Manipulating the control polygon (control net or vol-

ume) instead of the grid points on curve (surface or volume) will save the com-

putational time. It is reasonable to work on the control polygon and then re-

evaluate the entire geometry with the efficient NURBS evaluation algorithm

(described in chapter four). This strategy has been applied to CFD simula-

tions, such as the moving boundarieaproblem or the temporally deforming ge-

ometry [Ref 13]. FOr the unsteady problems, the grids needed to be generated

efficiently in each time step to shorten the simulation procedure. Manipulat-

ing the control polygon and then evaluating the grid will meet this require-

ment. The following examples show the deforming geometry problems with

this approach.

NURBS Models the One Dimensional Wave Movement

A straight line can be easily modelled by NURBS with two control

points and set the order equ_ to two. However, to model the wave propaga-

tion along a one d_mensional curve, the order of the NURBS curve must be set

to at least three (or greater than three) to get a smooth wave movement. Also,

the approach presented in this study is applying the manipulation to the con-

trol polygon, hence, one hasto set enough numbers of control points to catch

enough simulating information. In this one dimensional case, a NURBS curve

with nine control points isused. The order of this curve is three. In order to

simulate the wave propagation along this curve, the one dimensional wave

equation [Ref 1] is solved and applied to the associated _S control poly-

gon at different time steps. The one dimensional wave equation can be de-

scribed in equation (5.1) shown as follows.



131

ut + aux = 0 (5.1)

where u is the displacement iny axis direction, and a is the propagation speed.

This simple wave equation can be solved by many available finite difference

schemes [Ref 1]. However, in this study, instead of solving this equation to all

the grid points (121 points) on the curve, the wave equation is applying to the

NURBS control polygon. Originally, the control polygon (consisting of nine

control points) lines in the x axis. At the first time step, the initial condition is

set so that the y coordinate of the first control point is perturbed. The bound-

ary condition is set to the leit hand side of the curve. The y coordinate of the

first control point is oscillating with certain damping functions at each time

step. The explicit upwind scheme [Ref 1] is used to solve the equation. At

each time step, when the new control points are obtained according to equa-

tion (5.1), the NURBS curve evaluation algorithm (described in Chapter four)

is utilized to generate the new curve. Solving equation (5.1) will result in a

propagating wave based on the initial condition and boundary condition.

Hence, the final curve evaluated with different control polygons will result in

the new curve which simulates the wave propagation. This simulation is dem-

onstrated in Figure 5.12 at different time steps.

One may doubt why this approach is needed for this simulation, be-

cause many other approaches can reach the same result without using

NURBS representation. The reason is that the proof of the versatility of using

NURBS for different applications. And for the complicated cases, such as the

surface or the volume with large grid points, this approach can reach the goal

with less computational time.
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time = 0 sec

time = 1 sec

time = 2 sec

time = 3.5 sec

P

time = 5 sec

NURBS control polygon. NURBS curve.

Figure 5.12 NURBS curve simulates the wave propagation.
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NURBS Models the Two Dimensional Wave Movement

Similar to the one dimensional case, the NURBS surface can be used to

simulate the two dimensional wave propagation. This is done by applying the

two dimensional wave equation to the control net of the NURBS surface and

then evaluating the surface grid with the new control nets at each time step.

The resulting surface grid will be smooth if proper orders and knot vectors are

'selected for the NURBS evaluation. The 2D wave equation is described in

equation (5.2) as follows.

ut + aux + buy =0 (5.2)

A NURBS surface with orders 3 by 3 is used to model this wave propagation.

The knot vectors are set so that the multiplicities of knot values in the evalua-

tion domain are all equal to one. Hence, the surface grid will be C 1 continu-

ously. Initially, the control net (consists of 19 by 19 control points) sits on the

xy plane. At the time step equals to 0, the initial condition is set so that none

of the control points is perturbed. The boundary condition is set to the center

of the control net (the indices of the (9, 9) control point). The z coordinate of

this control point is oscillating at each time step with a designed damping

function. The function will create different z attitudes for the central control

point at different time steps. The z displacement verses time steps of control

points (9,9) is shown in Figure 5.13.
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Figure 5.13 The oscillating function of the central control point.

An explicit finite difference scheme is used to solve equation (5.2) for

propagating the z displacement. At each time step, when the new control net

is obtained, the efficient evaluation algorithm (described in chapter four) is

then used to generate the corresponding surface. In this simulation, the wave

speeds (variables a, b in equation (5.2)) are set to be the same, and the time

step is sot to 0.1. This simulating process is demonstrated in the Figure 5.14

for different time steps.

The NuRBs is composed of the control polygon (net or volume), orders,

knot vectors and the weights. A previous example shows the deforming geom-

etry obtained, by manipulating the locations Of the control points. Another al-

ternative_ for modeling _e motion grid is manipulating the weights of the

NURBS repreeentation. The next example of deforming geometry is demon-

strated by manipulating not only the control points but also the associated

weights. As is discussed in chapter two, the NURBS modeling algorithms for

the circular arcs, elliptic arcs and the superelHptic arcs are analogous. For an

arc (_ar_ arc, .elliptic _ or_the.supere]liptic arc)with sector angle less
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Figure 5.14 NURBS surface simulates the wave propagation.
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than 900, three control points with proper weights will be enough to model the

arc. The differences between these three entities are the determination of the

weights and the values of the radii (or semi-mgjor and semi-minor for the el-

lipse). Utilizing these three NURBS (circular arc, elliptic arc and superelliptic

arc) representations, one is able to model a deforming grid -- from a circular

arc to elliptic arc (by changing the radii) and then to a supereUiptic arc (by

changing the weights). This example is demonstrated by a 3D transition duct.

This 3D transition duct was designed to connect a typical circular engine ex-

haust to a high aspect ratio rectangular supersonic nozzle. The corresponding

CFS simulation and the experimental results were first presented by the sci-

entists in NASA Langley Research Center to investigate the effect of internal

transition duct length on nozzle performance [Ref 41,48]. Many of the re-

searches were concentrated on the CFS solution, however, the grids of this

transition duct can be modelled easily bY NURBS with a very concise control

net (or control volume). Since the transitional cross sections were represented

by the superellipse, the algorithm described in chapter two can be used to

model each cross section with NURB S representation. Utilizing the _ruled

volume" algorithm, one can generate the associated NURBS control volume

for this circular-_-rectangular duct. Figure 5.15 shows the 3D grid as well as

the associated NURBS control volume.
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Figure 5.15 Circular-to-Rectangle nozzle (NURBS control volume & grids).

Based on the lmowledge described in chapter two, one knows the fact

that for a NURBS circular arc and elliptic arc with the same sector angle, the

associated weights for these two NURBS representation are the same. The

only difference is the radius of thecircular arc changes to a pair ofsemi-m_jor

and semi-minor axes of the ellipse. Also, for a NURBS elliptic arc and a su-

perelliptic arc with the same sector angle, the associated semi-major axes and

semi-minor for these two NURBS representation are the same, however, the

weight of the middle control point differs. Hence, one can apply these deform-

ing relations to model this transition duct. The first procedure is to construct

a NURBS cylinder with proper radius. A cylinder can be modelled by only 9

by 2 control points, however, in order to model the final circular-to-rectangu-

lar duct, more control points are needed in J direction so that it can catch the

changing shape of the throat portion of the duct. Since only the radii change

from the shape of circular cross sections to elliptic cross sections, the second

step is then manipulating the associated radii of the control net at different

cross sections to proper semi-mgjor and semi-minor values without altering
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the weights. During these processes, the shape of the cylinder will deform to

the shape of circular--to-ellipse. The last step is then to increase the weights

at the middle control point at each cross section of control net according to

Table 2.1 for the superelliptic configurations. Figure 5.16 shows the deform-

ing processes at different time steps for this configuration.

This grid generating process may be tedious and time consuming, which

makes the simulation of deforming geometry problem difficult. In previous

cases, the NURBS :representation has been utilized for modeling the 1D and

2D wave equations. One may neglect the advantage of this NURBS modeling

approach since the resolutions used for those two cases are not extremely

high. However, for the volume case, the CPU time required for evaluating all

the grid points is much larger than those of the curve and surface cases. Be-

sides, the fact that the volume grids must be re-generated at each time step

makes it a computational in_nsive problem. Utilizing the NURBS for this

deforming geometryprob!em win make a substantial difference.



139
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Figure 5.16 Dynamic grid generation for deforming duct geometry.
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After demonstrating the capability of using NURBS to model the de-

forming geometry, an unsteady simulation using this approach is presented.

This casesimulates the flow passing through a 3D pipe which deforms at each

time step. This 3D pipe is generated first by creating two NURBS cylinders

with radii of r and 0 (a cylinder with radius 0 indicate a singular surface), the

"ruled volume s algorithm is then applying to these two NURBS surfaces to

create the final control volume. The size of control volume of this pipe is only

2 x 2 × 9. However, in order to catch the deformation, more control points are

needed in flow direction. The knot insertion algorithm is then used to achieve

this goal. Figure 5.17 shows the control volume and the O type volume grid.

Figure 5.17 _controI volume for a deforming pipe.

Figures 5.18 and 5.19 show the deforming control volumes and the

associated volume grids. The efficient NURBS evaluation algorithm (de-

scribed in chapter 4) is utilized to generate the deforming grid at each time

step. The unsteady solutions (courtesy Boyalakuntla [Ref 13]) obtained from

UBI [Ref 2] flow solver are shown in Figure 5.20 ~ 5.22.
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Figure 5.18 Control volume and grid of a deforming pipe (I).

II
II

Figure 5.19 Control volume and grid of a deforming pipe (ID.



142

....... m ,,

Figure 5.20 Grid and solution of a deforming pipe (I).

Figure 5.21 Grid and solution of a deforming pipe (H).
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Figure 5.22 Grid and solution of a deforming pipe (HI).



CHAPTER VI

CAGI: COMPUTER AIDED GRID/NTERFACE

As is discussed in previous chapters, NURBS representation has many

important properties which are useful in many research fields such as com-

puter graphics, CAD/CAM, and the grid generation. It has also become a stan-

dard for geometric modelling in the industry. The transforming procedures

and generation algorithms described in previous chapters show the versatility

of using NURBS. The issue of geometry communication between the different

packages is supported by the use of the standard IGES data format. In order

to integrate all the NURBS properties and enhance the portability of geome-

try/grid, a computer software is developed to provide the efficient tools for CFS

analysis. The structure and the current status of this software, CAGIm Com-

puter Aided Grid Interface, is briefly introduced in this chapter.

CAGI Overview

CAGI is sponsored under the grant from NASA Marshall Space Flight

Center. The motivation for developing this soitware is to try to build a bridge

between the CAD/CAM system and grid generation codes. This code is aimed

at developing a software system which integrates CAD/CAM geometric system

output and IGES files for widely utilized grid generation systems and expect-

ing it to allow for fast, efficient and economical responses to the pre-proces-

sing required in CFD applications.
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The development of CAGI is carried out in a modular fashion by using

the FORMS library [Ref 39] for designing the friendly Graphical User Inter-

face (GUD. The main modules include:(i) Geometry transformer-- developing

a process of transferring widely utilized geometry entities defined in the IGES

to NURBS format; (ii) Geometry manipulation - including NURBS geometric

toolkits for easy manipulation of those sculptured geometries. The techniques

of the %bstacles of using NURBS and the overcoming strategies" described in

chapter 4 are also included to redistribute candidate geometric entities (curve,

surface and volume) with desired distributions; (iii) Geometry generation -

providing easy inputs for generating the NURBS sculpted geometry (curve,

surface and volume). The overall objective of this work can be illustrated as

Figure 6.1.

CAD/CAM
packages J

Flow

Visualization

Geometry
CAD GRID

GRAPHICS

Flow

Code

Geometry
Manipulation [

Geometry [Generation

USER INTERFACE

Figure 6.1 The modules of CAGI and their links.

The modules of"Flow Visualization" and "Flow Code" are not fully im-

plemented in current CAGI.
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Each module implemented in CAGI may be performed independently

for different tasks. All of the modules are linked together with a common

graphical user interface (GUI). This intuitive graphical user interface pro-

vides a user friendly environment for easy and efficient manipulation and gen-

eration of the desired sculptured geometry. The graphic visualization is devel-

oped utilizing the GL (Graphic Library) available on the SGI machines.

Figures 6.3 and 6.4 show the graphical user interface with the entire screen

layout of CAGI.

From Figures 6.3 and 6.4, one can realize that CAGI is constructed by

creating a main panel window, an image display window, and several sub-

panels. The main panel is the one which holds the commonly used function

buttons or those buttons which can access the other sub-panels. The graphi-

cal image display window located in the middle of the main panel is the win-

dow that allows the user to interactively view the grids and the sculptured ge-

ometry. A message panel, located below the lower-left corner of the image

display window, is designed to report any error message or provide some use-

fnl messages for the users. Next to this message panel are those function but-

tons which control the transformation. The user can adjust the proper sensi-

tivity and utilize either those buttons or the mouse to contr_the translating,

rotating and scaling of the displayed objects. Some other commonly used func-

tions, such as refreshing the screen or changing the background color of the

display window, are provided for the easy access on the global panel.

Transformer Module

As is discussed in the previous chapter, grid generation system and

CAD/CAM design tools often utilized different formats which makes the trans-

ferrial of information between systems difficult and tedious. The Geometry



147

Transformer module designed in CAGI is developed to facilitate such commu-

nication. The theory behind this transformation is to use the NURBS as the

interface. This is expressed in Figure 6.2.

Figure 6.2 NURBS - interface between grid system and CAD/CAM.

Any standard IGES file (or NASA-IGES file and NINO) from a CAD/
L

CAM _tem e_ be _m_fomod into NUt.S and then output the desired

geometric entities to discrete grid data set, such as the PLOT3D format, for

the utilization in grid generation tools. Or from the other direction, any geom-

etry defined by those geometry generation functions in C'AGI can be output to

a standard IGES for the use of any CADiCAM design tools. The algorithms for

transformingthe various geometric entities into the NURBS representation

are presented in chapters 2, 3 and 5. Table 6.1 lists those IGES geometric en-

tities which, can be transformed to NURBS definition in CAGI as well as those

defined in N_A-IGES and NINO.

Atter an IGES fileis read in, thegeometrlc enilities_be shown on the

image display window, and the associ_ _e list" of each entities will be

listed on, the "Entity Name I._t" brow_r!_d on the left side of the mmn

panel .M _._'n in Figure 6.5. If _e name list is highlight_l, then the

associated entity is defined U "active" and will be displayed in graphic win-

dew, w hi)gtlzo_ wi_'tlzout_" " _are defined "inactive"and will be

hided _ the graphic windo w. The.w van interactively turn on/off of cer-

tain entity by selecting the corresponding name list in this browser. However,

no matter the entities are highlighted or not, they are all in the CAGI's data-

base unless the user _delete" them by selecting the proper function.
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Figure 6.8 CAGI screen layout (1).
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Figure 6.4 CAGI screen layout (2).



150

Figure 6.5 Illustration of IGES Transformer Module in CAGI.



Table 6.1 List of IGES Entities Supported by Different Packages.
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Entity
Number

0

100

102

104

106

108

110

112

114

116

Entity Name

Nun Entity

Entry

Composite Curve Entity

Conic Arc Entity

Copious Data Entity

Plane Entity

Line Entity

Parametric Spline Curve Entity

Parametric Spline Surface Entity

NASA
IGES

NINO

Point Entity
i

Ruled Surface Entity

CAGI

v'

118

120 Surface of Revolution Entity

Tabulated Cylinder Entity
ir

Transformation Matrix Entity

NURBS Curve Entity

122

124

126

128

130

140

v"

141

142'

143

144

NURBS Surface Entity

O_.et C .ur¥,eEntity

offset SmT.ace Entity

Boundm-yEntity

Curve.on a Paramet_c Surface

Bounded Surface Entity

The fields without _v" under NASA-IGES and NINO don't mean these

translators can not process those entities, it only indicates those entities must

be transformed first to any entities allowed in NASA-IGES and NINO format.

And the "Bounded Surface" and _ed Surface" must be processed interac-

tivelyin CAGI.
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In the process of designing the sculptured geometry in the CAD/CAM

systems, many geometric entities which are not necessary for the CFS analy-

sis may be created. For example, a surface may be formed by revolving a

boundary curve which was defined by set of discrete points, but the final IGES

file created by the CAD may contain all the points and curves which are not

needed. Reading all the entities and transforming them to NURBS definition

requires a lot of CPU time and memory for those un-interested entities. As

well displaying all of the entities on the graphic windows not only clogs the

entire screen but also makes it hard for any manipulations. CAGI provides a

solution to this problem by allowing the user to filter the entities before they

are processed. For example, turn off entity 106 and 110 will make CAGI to

skip processing the points and lines contained in an IGES file. And the other

alternative to avoid the hurdle is to read all entities and store them in data-

base, but use the _group function _ to turn on/off or delete groups of entities.

For example, the user can turn on/off all the points, curves or surfaces or cer-

tain specific entity type by selecting the proper buttons. A status report re-

grading the IGES entities is provided after this procedure.

Geometry Manipulation Module

After transforming an IGES file, one may select this module to modify

the geometry by utilizing the NURBS properties. The NURBS information

such as the degree, number of control points of the selected curve or surface

will be shown in the proper position of this panel. The user can change the

control polygon coordinates or the associated weights and visualize the change

of the geometry interactively. Nevertheless, the most useful features for the

NURBS representation in the applications of the numerical grid generation

are the changing of resolutions and the distribution functions without distort-
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ing the original geometric definition [Ref 88,90,91]. When the user select this

module, a distribution panel also pops up at the right-lower corner of the

main interface. This distribution panel provides eight different packing func-

tions to define the spacing of the NIH_S curves, surfaces and volumes. How-

ever, as is aforementioned, the largest obstacle which inhibits the engineer to

utilizing the NURBS definitions is the difficulty in controlling the spacing of

the NURBS boundary or surface. This is because the NURBS is represented

in theparametric:form, the distribution function defined in parametric space

may not always be reflected in the physical space. In other words, an even

spacing in the parametric space may not result in an even distribution in

physical space (more detail information about this problem is discussed in

chapter 4). To solve this problem, CAGI provides options for the user to choose

whether the distribution is defined in parametric or physical space. The sharp

corners (discontinuous points) on the curves or surfaces can also be main-

tained during the redistribution procedure. Moreover, the NURBS tool kits,

such as knot insertion and degree elevation, data reduction are implemented.

When reading the IGES file, the geometric entities may have different

orientations which make them difficult for CFS analysis. For example, two

adjacent surfaces may have complet e different I and J directions. For this

problem, CAGI also provides the functions which allow the user to _reverse _

the directions, _swamp" the orientations Of any selected NURBS entities. Fig-

ure 6.6 shows the functions implemented in this module.

..... Geometry Generation Module

CAGI not only imports the geometry defined in the CAD/CAM system,

it also has the capabilit_y_to create geometry with NURBS definition for 3D

curves, surfaces and volumes. Since the grid points / lines may not necessarily
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pass through the NURBS control polygons (or the control nets), it has been a

difficulty for grid generation software to model the geometry utilizing the

NURBS information. For example, most of the engineers who don't have a sol-

id NURBS background don't know how to define the _S control net, the

associated weights and the knot vectors to model a sphere (or other geometry).

However, in CAGI's generation module, this problem has been overcome. The

user doesn't even have to know the NURBS definition to generate the bound-

aries and surfaces (volumes). The corresponding NURBS definitions (control

points, weights, orders and knot vectors) will be automatically created by the

user's simple input. For example, to build a NURBS circular arc, the user only

need to specify the center, the radius and the desired angles, CACTI automati-

cally transforms these specified information to the NURBS representation.

Same for the generation of the surface and volume. The functions implement-

ed in this module include the generations of point, curve, surface and volume.

For NURBS generation functions, they are listed as follows.

NURBS Curve Genereti_'on Functions"

The functions implemented in this module include generating of the

NURBS _Straight line", _Circular arc", _Conic arc", "Reading a_NURBS curve",

_Extract a NURBS curve from a _S surface", _Interpolate data set to a

NURBS curve", "IYanslate / Scale / Rotate of a existed NURBS curve _, rRotate

a point with any arbitrary axis to create a NURBS arc', _Split a NIYRBS curve

to two NURBS segments', _Join two NURBS curves to one NURBS curve',

_Create a NURBS curve by trimmlrlg a existed NURBS curve _, _Creating a

_S curve which lay on top of a NURBS surface', _DupHcate a NURBS

curve with respect to any arbitrary axis', _Reflect a NURBS curve with re-

spect to any arbitrary plane'.



155

NURBS Surface Generation Functions:

The functions implemented in this module include generating of the

_'URBS ruled surface n, _NURBS surface of revolution n, _H.IRBS Tabulated

cylinder (Extruded surface) n, _Reading a NURBS surface n, "Prauslate / Scale /

Rotate of a existed NURBS surface r, _Pransfinite I_. terpolation of a NURBS

surface n, _I)uplicate a NURBS surface with respect to any arbitrary axis n, "In-

terpolate data set tc_£orm a NURBS surface n, _SpHt a HURBS surface to sever-

al NURBS sub patches _, _Jointwo NURBS surfaces to_ne single NURBS sur-

face _, aC_eate a NURBS surface by trimming a existed NURBS surface n,

"Reflect a NURBS surface with respect to any arbitrary plane s and "Offset

NURBS surface s.

NURBS Volnme Generation Functions:

The functions ".nnplemented in this module include generating of the

q_URBS ruled volume-, q_IURBS volume of revoltition n, _NURBS Tabulated

volume', _Reading a NURBS volume _, "Pranslate / Scale / Rotate of a existed

NURBS vol_e', _IYRnRAnlte Interpolation of a NURBS volume', _DupHcate

a NURBS volume with respect to any arbitrary axis', _Split a NURBS volume

to several NURBS sub volumes _, _Join two NURBS volumes to one single

NURBS voimen, _create a •_S volume by trimming a existed _S

volume"and "Reflecta _S sur_ Withre_pe_toany arbitraryplanen.

Figure 6.7 shows Several NURBS surfaces creab_d in this generation

module. ....
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Figure 6.6 Illustration of NURBS Manipulation Module in CAGI.
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Figure 6.7 Illustration of NURBS Generation Module in CAGI.





CHAPTER VII

STRUCTURED GRID TOPOLOGY ON TRIMMED SURFACE

As mentioned earlier, CAD/CAM systems generally utilize the IGES

format for geometry Input and Output. The trimmed parametric surface (en-

tity 144) is the: most frequently used entity in the IGES format. Unfortunate-

ly, this entity is also the most difficult entity for structured grid topology. This

trimmed entity can not exist alone, it must be coupled with another entity

entity 142, which is the curve on a parametric surface entity. This entity is

used as the trimmed curves to define the boundaries of the trimmed surface.

Hence, to know how a trimmed surface is defined, entity 142 must be pres-

ented first.

Curve on a Par,metric Surface Entity_ (Ty__e 142)

This entity is defined by a parametric surface, called an "untrimmed"

surface along with the parametric curve, and identifies the curve as the entity

lying on top of the surface [Ref 35].

Let the domain D of the parametric surface be a rectangle in (u,v) space,

then the surface S(u,v) can be defined as equation (7.1).

S(u, v) ffi (x(u, v), y(u, v), z(u, v))

D = [ (u,v)lui u u2, Vl v v2J
(7.1)

The domain of the parametric curwe, denoted as C(t), must He in the range of

the parametric domain of the surface D, and assume the parametric values

which are used for evaluating C(t) are represented as B(t). Then B(t)must
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satisfy the equation (7.2) shown as follows.

B(t) = (u(t),v(t)) a _ t _ b a E [gl, U2], b E [Ol, O 2] (7.2)

Then the parametric curve C(t) which lles on top of the surface can be repre-

sented as-equation (7.3)

C(t) = S(B(t)) = S(u(t), v(t)) =

(x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t)))
(7.3)

Hence, there are three geometric entities included in entity 142. They

are the untrimmed surface, parametric curve B(t), and the parametric curve

C(t). The curve B(t) is a 2D plane curve and lies on the parametric domain of

the untrimmed surface, . while the curve C(t) is a 3D curve lies on the un-

trimmed surface in physical space. These two curves are mutually related m

C(t) can be generated by the composite mapping of S(B(t)), while B(t) can also

be obtained by projecting curve C(t) onto the untrimmed surface and finding

the corresponding parametric values in the Parametric domain. Because

these two curves are both given in the IGES file, there may be conflicts if one

like to specifies one curve differently from the other (say, obtaining the curve

B(t) from curve C(t) vs. obtaining curve C(t) from B(t)). This means projecting

the curve C(t) onto the untrimmed surface may not be able to obtain a curve

exactly the same as B(t), or on the other hand, evaluating the B(t) on surface

S(u,v) may not be able to create the same curve as C(t). Obviously, this will

lead to the accuracy problem. Hence, in an IGES file, another flag is used to

control which curve should be used to avoid this problem. This flag is denoted

as "PREF _ (preferred flag). IfPREF is O, IGES does not specify which curve to

use, ifPREF is 1, the B(t) should be used, ifPREF is 2, then curve C(t) is pre-



ferred, if PREF is 3, then beth C(t) and B(t) are equally preferred.

illustrates the entity 142.
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Figure 7.1

(t)

• °

araIn

Figure 7.1 Illustration of IGES entity 142.

After knowing the format of entity 142, the trimmed surface can be de-

fined. In the IGES format, the trimmed surface is defined by a surface, called

the untrimmed surface, along with two types of boundaries -- the outer

boundary and inner boundary which are lying on the untrimmed surface.

Both types of boundaries are defined with the format of entity 142• Hence, the

untrimmed surface which the beundaries (entity 142) lie in must be identical

to the one defined in the trimmed surface entity. If the_number of inner

boundaries is greater than or equal to zero, however, there is only one outer

boundary defined. If there is no outer boundary curve specified, the bound-

aries of the untrimmed surface will be used as the default outer boundary (one

closed curve), and if there are no inner boundaries and no outer beundary spe-

cified, then the trimmed surface will be equal to the untrimmed surface. Fur-

thermore, all inner / outer boundaries must be simple closed curves and mutu-

ally disjoint. Each of the inner boundaries must lie in the interior of the outer

boundary. Hence, the domain of the trimmed surface is defined as the corn-
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mon region of the interior of the outer boundary and the exterior of each of the

inner boundaries and includes the boundary curves. Figure 7.2 illustrates the

definition of this entity.

¢

/

f \

\ /

Outer

Boundary

Inner

"Boundary

....Untrimmed

domain

__/ \
--t
--\ /

Trimmed surface region

Figure 7.2 Illustration of IGES entity 144.

The four-sided structured patch requires the number of grid points on

the opposite boundary be the same; it also requires that the total number of

grid points be equal to the multiplication of the grid points of two adjacent

boundaries. Apply these two criteria to the trimmed surface shown in Figure

7.2, one can immediately understand that the trimmed surface is not a real

structured patch. Indeed, it is shown only for display. As matter of fact, it is

plotted by the "scan lines _ and the "filling polygons _ algorithms [Ref 27]. Be-

cause all the inner and outer boundaries are simple closed curves, any "scan _

line which parallels to I (or J) direction of the parametric domain will intersect

all the boundaries with even number of points. Out of all these intersection

points, those line segments starting with odd number will be plotted. For ex-

ample, plotting the line segments connecting the points of(l, 2), (3, 4), ... (N-l,

N). Same procedure should be applied to the J (or/) direction for another set

of line segments. Aiter this algorithm, the trimmed region (bounded by the
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interior of outer boundary and the exterior of inner boundaries) can then be

displayed, however, it can not be utilized for structured grid generation.

To grid the trimmed surface for a _structured _ topology is difficult. The

reasons for this are summarized as follows:

Complexity

As is discussed in previous section, the trimmed surface (entity 144) de-

fined in the IGES file may contain many inner boundaries, also the bound-

aries could be any shape (convex or concave curve). For the structured grid, it

requires 4-sided boundaries. However, in many of the trimmed surfaces,

there are 3-sided, 5-sided, or even more than 6-sided boundaries. This phe-

nomenon makes it very complicated for structured grid generation. It is al-

most impossible for the "automatic _ structured grid generation for a compli-

cated trimmed surface. Figure 7.1 demonstrates the complexity of the

structure grid generation, in which the trimmed surface contains four inner

boundaries and the outer boundary is not convex.

Inconsistency

The trimmed surface shown in Figure 7.2 is a simple geometry. It con-

tains only one inner boundary and one outer boundary. However, one can not

create the _ruled _ surface for the trimmed region by just connecting the two

boundaries. The reason of that is the two boundaries have different directions

and the starting points of the two curves are far away from each other. The

directions and the location of the starting points of the boundaries create the

inconsistency problem which increses the difficulty for griding the trimmed

surface.
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Accuracy

Another difficulty for griding the trimmed surface is related to the accu-

racy problem. Taking Figure 7.2 as an example, the inner boundary should be

a closed curve, however, the starting point and the ending point of this curve

are not exactly identical. The gap between these two points may come from

the tolerance defined in different design systems. This accuracy problem also

happens to the gap between the common edges of two adjacent trimmed sur-

faces. Also, all the trimming boundaries are defined with the format of entity

142 (curve on parametric surface), if improper parametric values are used, the

sharp corners (discontinuous points) on the boundaries may be lost, and this

will lead to an inaccurate geometric definition. Because the trimmed surface

was designed in CAD/CAM systems, the accuracy problem already existed

when the geometry was imported to grid generation system. This increases

the difficulty for generating grids for the trimmed surfaces.

Grid Topology Requirement

As it has been mentioned it is very difficult to design an automatic grid-

ing package for a structured trimmed surface. Even though the simple

trimmed surface may be handled automatically, the returned structured grid

may not be useful for all the solution "algorithms. This is because different

solution algorithms may require different grid topologies - such as H type to

avoid the singularity point. Due to the preferred grid topologies required, the

difficulty for griding the trimmed surface increased.

All these difficulties indicate the design of an automatic structured grid

generator for the trimmed surface (entity 144) would be impracticable. In or-

der to overcome these Obstacles and also let the engineer determine the de-

sired grid topology, CAGI currently designs several panels for the user to



create structured grids interactively.

are described as follows.
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The functions included in these panels

Resolution Control

The first panel is developed for the purpose of visualizing the trimmed

entity. As is discussed in previous section, the untrimmed surface and the

trimming boundaries are presented as NURBS format. Hence, the resolutions

will control how the geometry be displayed on computer screen. If the resolu-

tions of the trimming entities are too low, the shape of the geometry may not

be truly displayed. On the other hand, if the default resolutions are set too

large, the program will take much CPU time and more memory to evaluate all

entities. Since the engineer is only interested in the "trimmed" region, setting

large resolutions for untrimmed surfaces and the trim_ng boundaries will

simply waste the computer resources. Therefore, the motivation for designing

this panel is to provide easy tools to increase the resolutions for a better un-

derstanding of the geometry, or decrease the r_solutions to reduce the memory

load after the trimmed region is completed. Figure 7.3 shows the layout of this

panel.
.4

Figure 7.3 Resolution control panel.
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Breaking Point Define

In order to generate the structured grid on the trimmed surfaces, it is

necessary to do the domain decomposition, and the first step of the decomposi-

tion is defining the breaking points on the trimming boundaries. The func-

tions implemented in this panel allow the user move the slider bar and inter-

actively see a breaking point moving on the trimming boundary both in the

parametric and physical space• The parametric value and the coordinate of

the breaking point will be updated whenever the user moves the slider bar.

One can press the "Add" (or =Remove") button to insert (or delete) the breaking

points from the database. Moving the slider bar may fail to obtain the proper

parametric values to catch the sharp corners on the trimming boundary.

Hence, a function is implemented to allow the user obtain all possible sharp

corners by finding the proper parametric values. These functions are illus-

trated in Figure 7.4.

Define Break Potnts

• _ Parametric space

Figure 7.4 Break point define panel.

Edge Define

After the breaking points are defined, the user is allowed to use any two

breaking points to define an edge. The edge could be a straight line in the
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parametric domain or a curve along the trimming boundary. While defining

the edges, the user not only can decide the resolutions but also can chose the

desired distribution by selecting various packing functions. The distribution

is referred to the physical space which means the user's desired distribution is

reflected on the trimmed surface region. The commonly used functions, such

as _Reverse the edge direction", "Combine two edges" are also implemented for

a easy manipulation. Figure 7.5 shows these functions and the corresponding

edges in the parametric space as well as the physical space. _: i

Physical space Parametric space

Figure 7.5 Edge define panel.

Structured Patch Define

After the edges are proper defined, the user can select four edges which

form a closed region and then apply the TFI algorithm to these four edges to

create a structured patch in parametric space. One can obtain one piece of

trimmed surface in the physical space by utilizing the parametric patch as the

parametric values and evaluating them with the untrimmed surface. Because

the TFI is applied to the edges on the parametric space, the resulting patch in

parametric space may not always result in a smooth surface in physical space.
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Hence, the elliptic function is implemented so that the user can improve the

quality of the final trimmed surface. These functions and example are all il-

lustrated in Figure 7.6.

I"! mm

Final trim surface. __a°ut lJ

Figure 7.6 TFI patch define panel.

TFI parametric patch.

Aider the user generates the pieces of trimmed surfaces, the output

functions designed in CAGI can be selected for outputing the surfaces to dif-

ferent data formats (for example, the PLOT3D format), the grid generation

package, such as the GENIE++ [Ref 61], can use" there surfaces for the volume

grid generation.

These interactive procedures allow the user to generate the structured

grids with desired topology on the trimmed surfaces. The algorithm which can

catch the discontinuous points (described in chapter four) has been installed

in "Break point define s panel. It allows the user obtain the proper parametric

values for the sharp corner in physical surface, hence, the proper break points

can be defined. The re-parameterization algorithm (described in chapter

four) which can generate the distribution accurately on physical space has

been installed in the _Edge define panel s. It allows the user to specify the de-

sired point distribution on the edges in trimmed surfaces. The smooth algo-

rithm based on the elliptic function has been implemented in the "TFI patch
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panel _ for a satisfactory structured grid. Another structured trimmed surface

example obtained from these procedures are shown as follows.

il

III!
Ill

un-trimmed surface parametric domain trimmed surface

Figure 7.7 Trimmed surface example.



CHAPTER VIII

SUMMARY AND CONCLUSIONS

The geometry modeling techniques used in Computer Aided Geometry

Design have been extended and applied to numerical grid generation for com-

plex real world applications. Thegeneral transformation algorithms which

precisely convert the Non-NURBS entities to NURBS representations have

been developed. These algorithms can be utilized to bridge the gap between

the grid generation and the CAD/CAM systems. Also, the two-way linkage

between the CAD/CAM and grid systems has been achieved through the IGES

format utilizing entities 126 (NURBS curve) and 128 (surface). The formula-

tion of NURBS has been extended from curves, surfaces to full 3D NURBS

control volumes to model the CFS configurations. The development of the re-

parameterization schemes and their influence o'n the curve / surface / volume

grid distributions is demonstrated by computational examples. The applica-

tions of these re-parameterization techniques to precise grid distribution con-

trol with accurate geometry fidelity have been demonstrated. An efficient

NURBS evaluation routine has been developed to facilitate the entire grid

generation process. In addition, the applications of NURBS to dynamic grid

generation presented in this study have proven the versatility of NURBS in

the CFS simulation processes.

The algorithms developed in this study have been utilized for various

grid generation related research areas. For example, the interpolation rou-

tines developed under this research have been applied to Yang's adaptation
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[Ref 83,84,85] as well as Shih's Turbomachinery grid generator "TIGER" [Ref

52,56]. The NURBS transformation and evaluation routines also have been

applied to Boyalakuntla's unsteady simulation for temporally deforming ge-

ometries [Ref 13]. These algorithms and the associated CFS applications have

been published in the Journal of _Computer-Aided Design _ and "Applied

Mathematics and Computations" [Ref 51,94].

The NURBS generation and manipulation algorithms have been incor-

porated as modules in the CAGI system. The motivation for developing CAGI

has been to follow the IGES standard, and incorporate the NURBS represen-

tations for the two way communications between the CAD/CAM and grid sys-

tems. CAGI provides the capability of processing the IGES files and converts

various IGES entities to NURBS representations. These NURBS representa-

tions are then evaluated, thus preparing the boundaries and surfaces for grid

generation. The generation module allows the generation of surface and vol-

ume grids based on NURBS generation algorithms. The _S database

adopted in CAGI allows the geometries / grids to be output to the IGES format

with entities 126 (NURBS curve) and 128 (NURBS surface). Thus, the grid

output is compatible with the needs of the CAD/CAM system. The intuitive

graphical user interface provides a user friendly environment for easy and ef-

ficient manipulation and generation of the desired sculptured geometry. In

summary, the algorithms developed and incorporated using CAGD techniques

in CAGI have demonstrated a significant time saving involved in surface prep-

arations associated with grld generation, Also, CAGI now provides a two-way

linkage between the CAD and grid systems.

The CAGD techniques have been utilized in CAD/CAM systems for de-

cades, many of them are well developed and documented in the literature.
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Some of these algorithms are adopted in this study. These algorithms include

the (NURBS) knot insertion, degree elevation, splitting /joining algorithms

[Ref 42-47,76,77] and the evaluation of the normalized BSpline basis func-

tions [Ref 18]. These algorithms have been realized and implemented in this

research. Also, the data reduction programs [Ref 38] and the FORMS Library

[Ref 39], available in the public domain are implemented. Applications of

these existing algorithms make the grid generation process easier. For exam-

ple, appJying the perturbations to the NURBS control net makes the simula-

tion of temporally deforming problem efficient. The modeling of volume grid

using NURBS control polygons reduces the memory storage requirement.

The grid generation process generally has a more restrictive require-

ment for modeling the geometry than that of CAD/CAM system. For example,

the surface of revolution option for grid generation is not always for a full rev-

olution (3600 revolution). Also the generation of the conic arc usually requires

different rotation angle and the knowledge of the semi-msjor and semi-minor

axis information. The generation of a circular arc may-require the different

staring and ending angles. Hence, the transformation algorithms for circular

arc, conic arc, surface of revolution to NURBS (described in Chaptor Two) are

all enhanced and generalized for the grid generation proc_. Also, the

grid adaptation algorithm [Ref 83-85] is enhanced by replacing the interpola-

tion algorithm with the new reparameterization algorithm (described in

Chapter Four) for the precise grid distribution control. When the NASA IGES

committee defined the NASA IGES spedfi" cation, the committee accepted vari-

ous suggestions from this study (such as the exclusion of the IGES plane enti-

ty, entity number 108, from the specification).
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The development of many new algorithms related to NURBS is the key

contribution of this study. These new algorithms include the transformation

of superelliptic arc to a NURBS curve, the transformation of cubic curve (sur-

face) to a BSpline curve (surface) and the transformation of a composite curve

to one NURBS curve (described in Chapter Two). Another contribution is re-

lated to the generation algorithms. For example, the generation of a cascad-

ing surfacebyNURBS and variousNURBS volume generating functions (de-

scribed in ChapterThree) have not been found in related literature. The new

NURBS evaluation algorithm presented in Chapter Four provides a competi-

tive alternative to the de Boor algorithm (in terms of memory and computa-

tional time). The new _reparameterlzation algorithm described in Chapter

Four already received positive feedback afar it was published in the Journal

of _Computer Aided Design _ [Ref 94].

Considerable advantages have been realized in the development of

these algorithms as demonstrated in this study. However, various research

issues remain to be addressed. They are described as follows.

Even though the re-parameterization allows the user to control the grid

points 0Aries) distributed along theNURBS entity-in the physical space, in

many CFS simulations, especiallyfor the viscous and turbulent problems, this

distribution function may not be adequate. The orthogonal grid near the

boundaries needs to be considered. Since the NURBS is an algebraic method,

the orthogonality is an important issue for further study.

The unstructured grid and the hybrid grid techniques have become pop-

ular and important in today's CFS simulation. These two techniques provide

the flexibility to construct a complex configuration easily. As the examples

shown in chapter three, one can generate the unstructured / hybrid grids in
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the 2D parametric domain and then utilize NURBS parametric property to

evaluate the final 3D unstructured / hybrid grid in the physical space. Howev-

er, the parametrization problem occurs. Even though the behaviors (aspect

ratio, skewness ...) of the triangles or hybrid grids are satisfactory in paramet-

ric space, this does not necessarily result in the same grid quality in the physi-

cal space. The re-parameterization algorithm for structured grids described

in chapter four will not be applicable to the unstructured _(_gulated) grid.

Hence,_the 1NIYRBS re-parameterization algorithm for unsttmctured and hy-

brid grid generation is an important issue for further research.

Another open question is related to the NURBS deforming geometry.

As is described in chapters two and five, NURBS is composed of the control

points, orders, knot vectors and weights. Changing any of this information

will lead to a new NURBS entity. However, the difficulty lies in the fact that

for certain geometries, there is not sufficient information to model them by

NURBS exactly. For example, exact modeling of the sine wave or a bell-

shaped curve with concise NURBS control polygons still has not been formu-

lated. For the deforming geometry problems, if the deforming shapes are spe-

cified within different time steps, for example, a semi_ change to a

sine wave within time interval 0 - 0.5 sec, and from the sine wave to a bell-

shaped curve within the time interval 0.5 - 1.0, the NURBS modeling tech-

nique may fail and a new combination change of the NURBS information

must be found.

A final important issue relates to the automatic structured grid gen-

eration for the trimmed surfaces defined in the IGES file. The strategies for

handling the structured trimmed surface presented in this study allows the

engineers to interactively generate the desired structured grid around the
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trimmed region. However, in some of the industrial applications, an IGES file

may contain thousands of trimmed surfaces. It is necessary to enhance the

procedures so that the overall structured grid generation on the trimmed sur-

face can be reduced.

Although there is still room for further work, as presented, CAGI has

already successfully bridged the gap between grid systems and CAD/CAM sys-

tems, and it has been effectively used in industrial applications. The NURBS

volume generation and manipulation algorithms will be extended to enhance

the CAGI to be a solid modeling package in the future work.
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This file was produced by CAGI (Computer Aided Grid Interface) betal.0 S

,, 19HERC/NSF Miss. State, I0Hsphete.igs, G

17HMSU/ERC CAGI VI.0,19HCAGI V1.0, 10/10/94,32,38,6, G

308,15,1 ! HUnspedfied, 1,1,4HINCH,32,32,13H951109.173219,0.000_1, G

2._,SHRobertYu, 11HHSF/ERC/MSU,9,0,13H951109.173219; G

1

1

2

3

4

128 1 0 0 0 0 0 0 00000000D 1

128 0 0 52 0 0 0 B_SPL_SF 1D 2

128, 4, 8, 2, 2, 0, 0, 0, 0, 0, 1P 1

0.000000E+00, 0.000000E+00, 0.000000E+00, 5.000000E-01, 1P 2

5.000000F.,-OI, 1.0000_E+00, 1.O000_E+00, 1.000000E+00, IP 3

0.000000E+00, 0.000000E+00, 0.000000E-tO0, 2.500(X_E--01, IP 4

2.500000B--01, 5.000000E--01, 5.000000E--01, 7.500000E-01, 1P 5

7.500000E-01, 1.000000E+00, 1.0000_E+00, 1.000000E+00, 1P 6

1.000000E+00, 7.071068E--01, 1.000000E+00, 7.071068E--01, 1P 7

1.000000E+00, 7.071068F_,-O1, 5.(XI_)00E.-0 !, 7.071068E--01, 1P 8

5.000000E-01, 7.071068F.,-01, 1.000000E+00, 7.071068B-01, IP 9

1.000000E+00, 7.071068E--01, 1.0000_E+00, 7.071068E-01, 1P 10

5.000000E-.01, 7.071068E-01, 5.000000E-01, 7.071068E--01, 1P 11

1.000000E+00, 7.071068E-01, 1.0000(X)E+00, 7.071068E--01, IP 12

1.000000E+00, 7.071068E-4)1, 5.000000E--01, 7.071068E-01, IP 13

5.000000E--01, 7.ff71068E--01, 1.000000E+00, 7.071068E-4)1, IP 14

1.000000E+0O, 7.071068E--01, 1.000000E+00, 7.071068E--01, lP 15

5.000000E--01, 7.071068E--01, 5.000000E-01, 7.071068E-.01, IP 16

1.000000E+00, 7.071068E-4)I, 1.000000E+00, 7.071068E--01, 1P 17

1.000000E+00, 1.000000E-tO0, 0.O(00OE+00, 0.000000E+00, IP 18

1.000000E+00, 1.000000E+00, 0.000000E+00,--4.371139E-_, lP 19

1.000000E400, 0.000000E+00,-I.00(X_E400, 1.000000E4_, 1P 20

0.000000E+00,-1.0(XXX)0E+00,--8.742278E--08, 0.000000E+00, 1P 21

1.000000E-t_0, 0.000000F_A-00, 0.000000FA4X), I.(X)0(OE-tO0, 1P 22

1.000000E44X), 1.000000E+00,--4.371!39E-08, 1.00(O00E+00, IP 23

1.000000E400,--1.000000E+00, I.O0(O00E+00, 1.000000E+00, IP 24

-I.000000E4430,-.8.742278E-08, 0.000000E-tO0, 1.000000E4430, lP 25

0.0000_E+00, 0.000000E+00, 1.000000F_A00,--4.371139E--08, 1P 26

1.000000E400,-4.371139E--08,--4.371139E-4_, 1.000000E+00, IP 27

-I.000000E+00,--4.371139E-_, 1.000000E+00,-I.000000E+00, IP 28

-8.742278E--08, 0.000000E+00, 1.000000E400, 0.O00000E+00, IP 29

0.000000B+00, I.(XXX)_._4X),-I.000000E-t00, 1.000000E+00, IP 30

--4.371139B-O8,-1.000000E+00, 1.O00000E4_0,-1._E+00, 1P 31
-I.0000001M00, 9.999999B--01,--I.000000E400,--8.742278B-08, IP 32

0.000000E44_0, 1.000000E400. 0.000000E44)0, 0.000000B44)0, 1P 33
1.000000B-t_,-1.000000B400,--8.742278B-08,:-4.371139B-08, IP 34

-I.000000E+00,--8.742278B-08,-1.000000B+00,--1.0000(X)E+00, IP 35

-8.742278E..O8,-I.000000E4430,-8.742278E-08, 0.000000E4430, IP 36

l._E-tO0, 0.000000E44X), 0.0000(X)E44_, 1.000000E44_, IP 37

-I.000000E+00,-I.000000E400,--4.371139B-08,--9.999999E--01, IP 38

-1.000000E.t_,--I.000000E4_,-9.999999E,._I,- !.000000E+00, IP 39

-I.000000E-t430,-8.742278E-08, 0.000000E.tO0, 1.000000E+00, IP 40

0.000000E+00, 0.000000B+00, 1.000000E-tO0o 1.311342E-07, 1P 41
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- 1.000000E+00,-4.371139B-_, 1.311342B-07,-I._B.t_,

-1.000000E4_, 1.311342E-O7,-1.000000E-tO0,-I.000(X_B-t_,

-8.742278E--08, 0.000000E+00, 1.000000B¢00, 0.000000E.t_,

0.000000E+00, 1.0000(X)ID(_, 1.000(XR)B+00,--9.999999B-01,

-4.371139E--08, 1.000000E4.00,--9.999999B-O I,--I.000000E4.(_,

1.000000E+00,-9.999998E--01,-I.000000E+00,-8.742278E--08,

0._E4.00, 1.000000E+00, 0.000000E+00, 0.000000E+00,

1.000000E+00, 1.000000E4430, 1.748456E-07,--4.371139E-08,

1.000000E.tO0, 1.748456E--07,-1.000000E-t00, 1.000000E-t00,

1.748456B-4YT,-1.000000E+00,-8.742278E-.08, 0.000000E+00,

O.O00000E+O0, I.O00000E+O0, O.O00000Ea4)O, 1.O00000B+O0;

S 1G 4D 2P 52

IP 42

IP 43

IP 44

IP 45

IP 46

lP 47

1P 48

IP 49

lP 50

IP 51

lP 52

T 1
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#
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#The number of control points of the surface
52

#The two degrees of the surface
21

#The two knot vectors

0.000000

0.000000

0.000000

0.500000

0.500000

1.000000

1.000000

1.000000

0.000000

0.000000

1.000000

1.000000

#The coordinates of the control points and weight
-1.950000 0.000000 0.000000 1.000000

-1.950000 1.200000 0.000000 0.707107

0.000000 1.200000 0.000000 1.000000

1.950000 1.200000 0.000000 0.707107

1.950000 0.000000 0.000000 1.000000

-8.000000-0.000001 0.000000 1.000000

-8.000001 8.000000 0.000000 0.707107

0.000000 8.000000 0.000000 1.000000

8.000000 8.000000 0.000000 0.707107

8.000000 0.000000 0.000000 1.000000
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Why is CAGI needed?

The computational Field Simulation (CFS) for physical problems has become more practical due to the

progress made in computer memory availability and the computer speed. This CFS process generally

involves the steps:

1. Pre-processing: includes numerical grid generation, boundary condition set up and definition

involving sculptured geometry description of all solid components and field boundaries / surface.
2. Processing: Numerical solving a set of non-linear partial differential equations at the grid point

developed by a pre-processor.

3. Post-processing--Numerical visualization of flow field properties simulated by the solution

processor.

In this process, the sculptured modeling and the grid generation are the most time consuming and

laborious work. It is necessary to develop a system which can reduce the geometry contruction and grid

generation time for the CFS process.

For a routine application of CFS, in an industrial environment, the overall response time for CFS must

be reduce considerably. As noted by several scientists:

" ...The industrial requirement is for reliable one hour grid generation turnaround for

one-time geometries when run by designers. The system m_t include CAD-to-Grid links

which resolve tolerance issues and produce grids with a quality good enough for the flow

solver. The designer has to feel that the grid generation processes is under control and is

predictable."

--- David Ives, Robert Miller, William Siddons and Kevin VanDyke. May 1995

In many of today's industrial applications, most of the geometrical configurations of interest to practical

problems are designed using a CAD/CAM system. Setting up the communication between CAD/CAM

design tools or other grid generation system would be the ideal situation. And this idea was pointed out

by the NASA Steering Committee on Surface Modeling and Grid Generation on 1992. Unfortunately,
the CAD/CAM systems have many different geometry output formats which force the designer to spend

a gread deal of lime manipulating geometrical entitites in order to achieve a useful sculptured

geometrical description for grid generation. In addition, there is a danger of losing the fidelity of the

geometry in this process of data transfer between different Input/Output (I/O) formats. The other issure
related field simulation is the grid quality. The quality of the grid affects the accuracy of the solution and

the computation time. It may be necessary to reconstruct the grids for a more satisfactory result after

obtaining the lust solution. This reconstruction procedure involves a change of either resolution (the size

of the grids) or the spacing (the distance between grid points) functins. However, this proess is tedious

and very time consuming; this is especially true for a complex geometry.



To bridge the gap between the CAD/CAM systems and the grid generation systems, it is necessary to
establish communicatin paths so that the geometries and grids defined within these two systems can be

linked with each other. For most of the CAD/CAM systems, the Initial Graphics Exchange Specificatin

(IGES) is a widely accepted standard for geometry exchange. Most CAD/CAM systems support the

IGES format as an Input/Output of resulting geometries. And for the grid generation part, there are many
approaches for representing sculptured geometry/grid, such as the Bezier curve/surface, parametric
cubic curve/surface, Hermit representation, Transfinite Interpolation (also referred as TFI) .... and so on.

Among these representations, the Non Uniform Rational BSpline (NURBS) has been widely utilized in
many appLications. NURBS is getting popular because it has a powerful features, such as the local

control property, variation diminishing and convex hull, .. etc. Also, the geometry tool kits, like the

curve/surface interpolation, data reduction, degree elevation, knot insertion and spLitting are all

well-developed. These features make the NURBS very useful not only in the CAD/CAM packages but

also in Grid Generation systems. And what important is - the IGES file already included the NURBS

curve (entity 126) and surface (entity 128). Therefore, if a software package can read in an IGES file,

and convert any Non NURBS entities to NURBS curve/surface, then the geometry defined in IGES can

be utilized by grid system. Or in the other way, if the geometry/grid defined in grid system is

represented as NURBS, then it is possible to output the grids to an IGES format with entity 126 and
128. If this can be done, then the geometry and grid are communitable, and the construction time for the

pre-posser can be reduced. CAGI is aimed at this goal. It is a package with NURBS database. It can read

in the IGES file and transforms the geometrical definitions to NURBS, or define the grids with NURBS
representation and output the grid with IGES data.

What is CA GI ?

CAGI stand for Computer-Aided Grid Interface. It is a grid gem'ation package with NURBS database.

The Graphic User Interface (GUD is made by utilizing the FORM Library, and the SGI Graphics

Library is utilized for the graphic display. CAGI can either read the standard IGES format or generate

grids form NURBS definition. The representation of NURBS has been extended from curve (1D),

surface (2D) to volume (3D) definition. This project is sponsored by the NASA Marshall space flight

center. Any suggestion or request can be forwarded to the technical monitors, Mr. Ted Benjamin and
Robert Williams.

Currently,CAGI contains several modules:

O Geometry Generation Module

This module allows the user to generate the grids from NURBS definition. The user can

create points, curves, surfaces or volume by the different NURBS options.

O Geometry Manipulation Module

This Module allows the user to manipulate the selected geometric entities (either curves,

surfaces or volume). The user is allowed to change the orentation, the resolutions, or even

the distribution of the selected entity easily by clicking the proper button or slider bars. Since

CAGI transforms the geometry to the NURBS definition, this module takes advantage of

NURBS properties/tools such as knot insertion, degree elevation, data reduction and even the

alternation of the location of control polygon and weight to change the shape of the

geometry.



0 Volume Grid Module & Geometry Viewing
Thesetwo modulesaretemperaflynot fully function.Theyareunderconstruction.

Contact Information

General Contact:

Dr. Bharat K. Soni

P. O. Box9627

Mississippi State, MS 39762-9627

13:::::: Or:(::1:3.2[::278

Technical Problem or CAGI Question:

Dr. Tzu-Yi (Robert) Yu

P. O. Box 9627

Mississippi State, MS 39762-9627

01)325-2467, Fax:(601)325-7692
: yu@erc.msstate.edu

CAGI request:

Mr. Ted Benjamin

ED32, NASA Marshall Space Flight Center

Huntsville, AL 35812

Te1:(205)544-9402, Fax: (205) 544-1215

_tedb @ tyrell.msfc.nasa.gov

Questions or comments about this document:

_ crystal @ erc.msstate.edu

Organization of the CAGI Manual

In this manual, you will find descriptions of the commands in CAGI and instructions on how to
use them. You will also find tutorials that give you step-by-step instructions on some examples.



The manual is arranged in the following manner:

0 CAGI Basics introduces the CAGI Interface.

0 CAGIMen Buttons describes the CAGI options and commands.

0 Tutorials�Demos help you get started learning the functions of CAGI.

0 Reference allows you to find the information you need more easily.

Navigating the CAGI Manual

In addition to hyperlinked texts, there are navigation buttons at the end of each document. The
navigation buttons are described as follows:

takesyou to theTable of Contents ,:..

ll takesyou toIndex

_l_ takesyou tothe previousfileinlinearsectionsof thedocument; takesyou tothe

parentfilein non-linearsections

iII takesyou to the beginningof theManual

l_ takesyou tothenext fileininlinearsectionsof the document; takesyou tothe

first child in non-linear sections



 CAGI ' ' Basics•"- < -: • ¢,

@ Starting CAGI

0 Limition: CAGI is implemented by C language, the memory allocation function is used. Unless

the user runs a very big IGES file or create several huge grids to consume the memory, otherwise,

otherwise, it can be executed in a small box like Personal IRIS. However, since the Graphics

functions and the GUI axe implemented by utilizing the SGI Graphics library, this program can

only be executed on SGI machine which supports the GL library.

O Execution: To run CAGI, simply type "CAGI _.'.

@ CAGI Main Window

This image shows an orientation of CAGI Screen Layout. It contains the geometry

displayed in the graphics window and the entire GUI layout with several main modules.

Click here for a large image. For each general section of the CAGI is discussed in detail
as follows:

@

Entity Name List

The Entity Name List panel is placed at the left side of CAGi. The panic lists the names of all the

entities in the database (either created from an IGES file or generated from the build function). If a

geometry (any grid) is created, then it will be displayed in the graphics window with the proper

named (with a highlight bar with right blue color) showed in this Entity Name List panel. If an

entity name is highlighted with a right blue bar, then that entity is referred as active and will be

displayed on the graphichs window. If an entity name is not highlighted, the entity is referred as

inactive and will not be shown in the graphic window. The user can mm on or off entities by using

the mouse to highlight or unhighlight an entity's name. For example, the use can put the mouse to

any of the entity name listed in this panel, and use the right mouse to crick the name to toggle

on/off of the entity.

Message Window

The Message Window is placed at the bottom left comer of CAGI. It is designed to show any error,

warning or status messages for the user.

Transformation Panel

The last panel in the main CAGI window is related to the wanformation and graphics window. The

Transformation Panel provides another options for rotating objects.

l
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O The I_1 buttons indicate rotation with respect to the positive axes.

O The _ buttons indicate rotation with respect to the negative axes.

There are three pairs of rotation buttons availabl_coupled with one principal

direction (i.e, the X, Y or Z axis). For example,_ press this rotation button

indicate the user like to rotate the active objects with respect to positive or negative X axis.

The rotation buttons for the same direction are mutual excluded (either positive or negative

direction). The user can select the rotation option for different principal axis at the same

time.

O The _ button allows the user to Rotate the objects continually once the rotation

direction is decided. In other words, after the rotation buttons are selected, press this button

will make the geometry objects continually rotated.

O

The sensitivity of the Rotation, Translation and Scale may be adjusted by using the buttons

found under the Sensitivity portion of the panel:

The _ buttons decrease the sensitivity of Translation, Rotation, and Scaling.

O The _[J buttons increase the sensitivity of Translation, Rotation, and Scaling.

The single arrow allows a minor decrease (or increase), while the double arrow button

allows a major decrease (or increase).

The Transformation Panel also has functions which allow the user to adjust the center of rotation:

O The _ button causes CAGI to calculate the center of all the active entites and bring

the active entities to the center of the graphic window.q'his button is used when the entities

are outside the graphics window after rotation, translation or scaling. CAGI (actually, the

GL library) uses the origin by default for transformation. This can be very inconvenientif the

entities are fax away from the origin. The rotation would be very hard to control if the

rotation radius is very huge. The Reset_V button counteracts this problem.

O The _ button tells CAGI to use the center of the entites as the rotating center. This

provides an each way to view the geometry even when it's far away from the origin. To

calculate the current geometric center, press the reset_v button.

0 The _ button displaces the xyz-coordinate frame.

This Transformation Panel also allows the user to change the background color of the graphic

window.

O The button allows the background color of the graphic window to be changed.

Once the button is selected, a color panel will appear. The user may change the color by

clicking on the desired color. The left and fight arrow keys found on either side of the
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pop-up screen give more color palettes to from which to choose.

Other functions available in the Transformation Panel include:

O The _ button allows the user to take a "snapshot" or picture of the entities displayed

in the graphics window. Once the button is pressed, the snapshot icon will appear. The user
then must:

1. Place the cursor over the snapshot icon until the cursor turns into a camera.

Note: If the snapshot icon appears in an area where it is undesirable, the user can

move the icon by placing the cursor over it and selecting the AIt and the F7 keys on

the keyboard. The cursor will become crosshairs and the user can move the icon to a

spot which is more convenient.

2. Hold down the middle mouse button. This keeps the camera cursor even when the

cursor is moved from the snapshot icon.

3. Select the fight mouse button.

4. Select Redraw Rubberband by moving through the menu until it is highlighted and

releasing the fight mouse button.

o Select and hold the left mouse button. Move the mouse to draw a mbberband around

the entity you wish to take a snapshot of. Once the rubberband is drawn, it may be

resized using the horizontal, vertical and comer cursors or moved using the Crosshair

cursor.

6. Select Newfile name by using the same procedure outlined in step 4. Once the File:

menu appears, enter the name and save it with ei/.her an .rgb or .gif file extension.

. Select Save and Exit using the same procedure outlined in step 4.

Note: If the user wishes to take more than one picture, the user can choose Save as

<file> and then go to steps 4 through 7 for each picture.

Note: For more information on using SnapShot, please refer to the Man Pages

O The _ button makes the graphics window resize to fill the entire CAGI screen. The

user may exit this view by pressing the F_,se key on the keyboard.

0 The _ button allows the user to delete unwanted entities. Generally, the user can

delete the geometric entity by using the button designed in the Geometry Manipulation

Panel. Also, the user can turn on/off of an entity by placing the cursor to the Entity Named

List Panel and clicking the entity. However, if the user like to delete an object without going

to manipulation panel, one can use this button to reach the goal. To utilize this function,

press the DelObj icon (and the button will keep on pressed). Next pick the entity name from

the Entity Name List. To stop deleting objects, click the DelObj button again (and the button

will be released). After the button is released, the user can use the mouse to click the entities
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in the name list panel to turn on/off the objects.

O The ][[[[[[[[iiiiil button allows the user to refresh the graphics window.

Note: If users have any suggesn'ons for additional functions, please send e-mail to Dr. Tzu-Yi

"Robert" Yu yu @ erc.msstate.edu.

O View Manipulation of the Graphic Window

The entities displayed in the graphics window can also be manipulated using the mouse:

O Translation

Entities may be translated by holding down the right mouse button and moving the mouse in the
desired direction. To move an entity down, hold the fight mouse button and move the mouse

toward you. To move an entity up, hold down the fight mouse button and move the mouse away

from you. To move an entity left, hold down the fight mouse button and move the mouse to the

left. To move an enity to the fight, hold down the fight mouse button and move the mouse to the

fight.

O Rotation

Entities may be rotated by holding down the left mouse button and moving the mouse in the
desired direction.

O Scaling

Entities may be scaled by holding down the middle mouse button and moving the mouse in the

desired direction. To zoom in on an entity, hold down the middle mouse button and move the

mouse toward you. To zoom out, hold down the middle mouse button and move the mouse away

from you.

Note: The sensitivity of these functions is controlled by the Transformation Panel. If the user

would like to reset the graphics window to the original view, select the Reset..V button on the

Transformation Panel. If the geometric entities are far away from the origin and make a large

rotation axis, press the Reset_v button first and then press the Center button to overcome the

problem.

lid CAGI Menu Buttons

CAGI has been designed with six menu buttons which remain on the top screen at all times (unless full
screen is chosen). These buttons are File,Set, Graphic,Entity,Help, and Exit buttons.

O The menu button cause a pop-up menu to appear shown as follows:
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The functions of this pop-up menu allow the user to input or output fries in various formats. These
functions are discussed below:

• Input / Output

The Input / Output field
allows the user to either

read in or write out a file.

The user can click the

button to switch for either

Input or Output function.

File Type

The File Type field allows
the user to select the file

format. The user can select

the IGES file format as

input or create an output
file for all the active

entities in either IGES,

FAST(Plot3D) or NURBS
format.

If a Plot3D file is to be read in,

the user should go to the

Geometry Generation Module and select either curve or surface for input. For reading the Plot3D

file, please refer to Interpolate and Plot3d functions in Geometry Generation Panel.

A Plot3D volume file can only be read after the Volume Grid Module has been utilized.

• Data Form

The Data Form field allows the user to select either Formatted or Unfornmtted data for

output.

• File Name

The File Name input field allows the user to type in the file name. Or if the user clicks the

file name listed in the browser, the selected file name will be displayed in this input field.

After selecting the proper data formats and keying the f'rie name, the user should press the

Accept button to process the case, or press the Close button to close this form.
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Examples of using these menu buttons am shown as follows:

.

.

Input Example: Select INPUT, ICES data file, type in the name of the IGES file (for
the IGES data, there is no "Unformatted" file), and then press the Accept button. After

the CAGI process the IGES file completely, press Close to close this form.

Output Example: Suppose CAGI already creates 2 curves and 3 surfaces (and these

entities are also actived), if the user would like to output these entities to Plot3d files.

Then select the OUTPUT, PLOT3D, UNFORMAT and type in the desired file name

for output, press the Accept for output. If the file name is already existed, CAGI will

pop up a warming message and ask the user confirm for overwriting the file or quitting

the output process.

O The menu button cause a pop-up menu to appear:

All the functions provided in this pop-up menu will change the properties of all active entities.
These functions are discussed below:

Shade

The Shade button will set all

the active surfaces, i.e. the ones
which are visisble in the

graphics window with the entity

name hilighted in the Entity
Name List browser, to be
shaded.

Wireframe

The Wireframe button turns all
active shaded surfaces to

wireframe (only the grid lines

axe plotted) ones.

Sur dr

The Sur clr button causes a

color panel to pop-up menu to

appear, from which the user can
choose the desired color for the

active surfaces.

Cur dr

Similar to Sur clr, this Cur clr

button causes a color panel to

pop-up from which the user can
choose the desired color for the

active curves.

• Backface





The Backface button is used to

turn backfacing polygon
removal on and off. Please refer

to the GL man pages for more
detail information. This

function is only effected when

the Transparency is applied to a

shaded object.

Reshape

The Reshape button in

conjunction with the NI, NJ and

NK input fields is used to

changed the resolutions of all
active entities. To utilize this

function, keyin the desired
values into the NI, NJ and NK

input fields. Next, select this

Reshape button to change the
resolutions of the active

entities.

• Single/Double

The Single�Double button

controls the precision of the

output file format. If Single is

active, then the output files will

be outputted as single precision.

If Double is active (after the

user press the Single, the button

will become Double) then the

output files will be output as

double precision. This is

important if the user like output

the geometry / grids and like to

visualize them by FAST, since
it can not read in Unformatted

Double precision file, the user
is advised to use Single

precision (the default) for

output.

• SurNet/

The SurNet/ button controls the

display of the NURBS control

nets associated with the active
surfaces. If this button is

pressed, all the active surfaces





will display the associated
NURBS control nets. The user

can click the button again to
release to turn off the function.

• CurNeg

The CurNet/ button controls the

display of the NURBS control
nets associated with the active

NURBS curves. Press the

CurNet button to turn on this

function and release the button

to turn the function off.

• CurNeteolor

The CurNetcolor button causes

a color panel to pop-up menu to

appear, from which the user can
choose the desired color of the

NURBS curves control nets.

SurNetcolor

The SurNetcolor button causes

a color panel to pop-up menu to

appear, from which the user can
choose the desired color of the

NURBS control nets.

adjust knot

The adjust knot button causes a

pop-up menu to appear, from

which the user can adjust the

knot vector(s) for the NURBS

entity (curve/surface or

volume) based on the

are-length. This button is used

when a NURBS entity has a
"bad" distribution.

• Reserved

The Reserved buttons are for

future functions. If users have

any suggestions for adding

extra functionalities, please
send e-mail to Dr. Tzu-Yi

"Robert" Yu at

yu @erc.msstate.edu





O The menu button causes a new pop-up menu to appear.

All the functions provided in this pop-up menu will modify the shading parameters for all active

and shaded entities. Using the right mouse button to press the Option button on the pop-up menu,

it will display four choices-Material Editor, Light Editor, Model Editor, and Close. Each choice
is discussed below:

1. Material Editor

Ambient

The Ambient field specifies the ambient reflectance
of the material. It is followed by three color slider

bars with floating point values, typically in the range

0.0 through 1.0. These values specify red, green, and

blue reflectances. If the values are (1.0, 1.0, 1.0), it

indicates the Ambient light is pure while. The

default values are as: 0.40, 0.20, and 0.00. The user

can modify these values by moving the the desired
slider bars.

Emission

The Emission feld specifies the color of light

emitted by the material. It is followed by three

floating point values, typically in the range 0.0

through 1.0, which specify red, green, and blue

emitted light levels. The default values for this field

are: 0.50, 0.00, and 0.00. The user can modify these

values by moving the color slider bars.

Diffuse

The Diffuse field specifies the diffuse relfectance of

the material. It is followed by three floating point

values, typically in the range 0.0 through 1.0, which

specify red, green, and blue diffuse reflectances. The
default values for this field are set as: 0.90, 0.50, and

0.00. The user can modify these values by moving
the slider bars.

• Specniar
The Specular field specifies the specular reflectance

of the material. It is followed by three floating point

values, typically in the range 0.0 through 1.0, which

specify red, green, and blue specular refleetances. The default values for this field are:
0.90,0.90, and 0.00. The user can modify these values by using the slider bars.

• Shininess

The Shininess field specifies the specular scattering exponent, or the shininess, of the
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material. It is followed by a single floating point value, typically in the range 0.0

through 128.0, which specifies the shininess. Higher values result in smaller, hence

more shiny, specular highlights. If this value is set as 0.0, it will effectively disables

specular reflection. The default value for this field is: 50.00. The user can modify this

value by using the slider bar.

Transparency

The Transparency field specifies the transparency of the material. It is followed by a
single floating point value, typically in the range 0.0 through 1.0, which specifies the

transparency. The default value for this field is: 1.00. The user can modify this value

by using the slider bar.
Reset

The Reset button located in the right upper comer of this form enable the user to

specify the desired material properties (like how to set the Ambient, Emission, Diffuse

and Specular values). Using the right button of the mouse to select the desired

material. Currently, the material of Brass, ShinyBrass, Pewter, Silver, Gold, Shinygold,

Plaster, Cyanplastic, Greyplastic, Yellowplastic, Redplastic, Greenplastic, Blueplastic,

Pinkplastic, Lavpolstone, Brownplostone are available.

2. Light Editor





Ambient

The Ambient field specifics the ambient light

associated with the light source. It is followed by

three floating point values, typically in the range 0.0

through 1.0, which specify the red, green, and blue

ambient light levels. The default values for this field

are: 0.20,0.20, and 0.60. The user can modify

these values by using the slider bars.

Leolor

The Lcolor field specifies the color and intensity of

the light that is emitted from the light source. It is

followed by three floating point values, typically in

the range 0.0 through 1.0, which specify the levels of

red green and blue light emitted from the light

source. The default values for this field axe: 1.00,

1.00, and 1.00. The user can modify these values by

using the slider bars.

X, Y, Z

The X, Y, and Z fields specify the position of the

light source in the graphics window. Each is

followed by a floating point value which specifies

the position in terms of object-coordinates.

law.alSnfinity View

The Local/Infinity View button allows the user to

choose where the light source be treated as locally

distant or infinitely distant. The default position for
the button is Local View.

Active Light

The Active Light field allows the user to choose the

number of active light sources. Values of 1 through 7 are available. The use can add or

delete light sources using either the Add or Del buttons. The arrows key allows the user

the select the light source for manipulating its properties.

3. Model Editor
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Ambient

The Ambient field specifies an additional ambient

light lievel that is associated with the entire graphic
window, rather than with a light source. This light is

added to the ambient light in the scene. It is followed

by three floating point values, typically in the range
0.0 through 1.0, which specify the red, green, and

blue ambient light levels. The default values for this
field are: 0.40, 0.20, and 0.00. The user can modify

these values by using the slider bars.

Attenuation

The Attenuation field specifies the constant and
linear attenuation factors associated with all

non-infinite light sources. It is followed by two

floating point values in the range 0.0 through 1.0.
The first attenuation factor is used to directly reduce

the effect of a light source on objects in the graphics

window. The second light source factor specifies

attenuation that is proportional to the distance of the

light source from the object(s) being lighted. The
default values for this field are 1.00 for constant

attenuation and 0.00 for linear attenuation.

Twoside

The Twoside button specifies whether lighting

calculations are done assuming that only frontfacing

polygons are visible, or are corrected for each

polygon based on whether it is frontfacing or

backfacing. If the button is pushed, a lighting model

that is correct for both frontfacing and backfacing

polygons is utilized. If the button is not pressed (the
default state), a lighting model that is correct only

for polygons whose visible face is the facet for

which normals have been provided is utilized.

Note:: The user can use the man page for "man lmdef' for more detail information.

O The menu button causes a new pop-up menu (see below) to appear:

The functions designed in this form, mainly dealing with the geometric database and the IGES

entities. They allow the user to tun on/off (or delete) groups of geometric entities contained in the

database, and also allow to "filter" an IGES file before the process. The functions are discussed as
follows:
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• Entities Statistic Table

The Entities Statistic Table displays
the statistics of the entities contained

in an IGES file which has been

process by CAGI.

• Inactive all
The Inactive all field contains three

buttons. These buttons allows the

user to inactivate a//points, curves

or surfaces by selecting the Point,

Curve or Surface buttons,

respectively.

• Delete all

Similar to the Inactive all, the
functions allow the user to delete

(erase from database) all points,

curves or surfaces by selecting the
Point, Curve or Surface buttons,

respectively.

Group active

The Group active field allows the
user to activate or inactivate all

entity groups displayed in the entity
choice -- the violet box between the

Inactive and Active buttons. The

user can select the entity groups by

clicking on the entity choice box

with the right mouse button. It will

display a list of the entity groups. To

select a group, go through the list until the desired group is highlighted and release the right

mouse button. Until the desired group is selected, the user can press Active button or
Inactive button to make the select geometric entities to be active or inactive.

• Group Del
The Group Del field allows the user to delete all entity groups selected from the entity

choice (described in the previous function). The user can select the entity groups by clicking

on the entity choice(the violet box) with the .right mouse button to display a list of the entity

groups. To select a group, go through the list until the desired group is highlighted and

release the right mouse button. To delete the selected entity group, push the Delete button.

Reset

The Reset button allows the user to reset the Entities Statistic Table by calculating the

current status of all entities in the database.

• Quit





TheQuit button allows the user to exit the pop-up menu.

IGES Entity Filter

An IGES file generally contains a lot of entities -- they could be points, curves or surfaces.

However, for a CFD application, the points (or some boundary curves) may not be that

important. Before reading an IGES f'tle, the user has options to "filter" out the undesired
entities by releasing the button with the entity name on it. After releasing the button, the

name of the button will be "Closed" to indicate that even an IGES file contains this entity, it

will not be process by CAGI. The user can select different entities from curve or surface
defined in the IGES file.

O The _ button allows the user to access the help menu. Since the current

documentation is written in the web site, currently, this help button is not function.

O The allows the user to terminate the CAGI program. A warming message

will appear for the user to confirm or cancel the exit.

OCAGI Modules

Cagi has been designed with four modules. Please click on the hypertext to read in-depth descriptions of
the functions available in each module.

O Geometry Generation Module

Selecting this module allows the user to generate the NURBS entities, i.e. a point, NURBS

curves, surfaces or even NURBS volume.

O Geometry Manipulation Module

Selecting this module allows the user to manipulate the selected geometric entities (curve,
surface or volume). Since CAGI transforms the geometry to a NURBS format, this module

takes advantage of NURBS properties such as knot insertion, degree elevation and the

alternation of the control polygon and weight function to change the shape of the geometry.

O Volume Grid Module

Selecting this modules aUosws the user to generate volume grids.

O Geometry Viewing

Selecting this module allows the user to visualize the solution or complex geometry.
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,"" "Introduction

Why is CAGI needed?

The computational Field Simulation (CFS) for physical problems has become more practical due to the

progress made in computer memory availability and the computer speed. This CFS process generally

involves the steps:

1. Pre-processing: includes numerical grid generation, boundary condition set up and definition

involving sculptured geometry description of all solid components and field boundaries / surface.

2. Processing: Numerical solving a set of non-linear partial differential equations at the grid point

developed by a pre-processor.
3. Post-processing--Numerical visualization of flow field properties simulated by the solution

processor.

In this process, the sculptured modeling and the grid generation are the most time consuming and

laborious work. It is necessary to develop a system which can reduce the geometry contraction and grid

generation time for the CFS process.

For a routine application of CFS, in an industrial environment, the overall response time for CFS must

be reduce 'considerably. As noted by several scientists:

" ...The industrial requirement is for reliable one hour grid generation turnaround for

one-time geometries when run by designers. The system must include CAD-to-Grid links
which resolve tolerance issues and produce grids with a quality good enough for the flow

solver. The designer has to feel that the grid generation processes is under control and is

predictable."

--- David Ives, Robert Miller, William Siddons and Kevin VanDyke. May 1995

In many Of today's industrial applications, most of the geometrical configurations of interest to practical

problems are designed using a CAD/CAM system. Setting up the communication between CAD/CAM

design tools or other grid generation system would be the ideal situation. And this idea was pointed out

by the NASA Steering Committee on Surface Modeling and Grid Generation on 1992. Unfortunately,

the CAD/CAM systems have many different geometry output formats which force the designer to spend

a gread deal of time manipulating geometrical entitites in order to achieve a useful sculptured

geometrical description for grid generation. In addition, there is a danger of losing the fidelity of the

geometry in this process of data transfer between different Input/Output (I/O) formats. The other issure

related field simulation is the grid quality. The quality of the grid affects the accuracy of the solution and

the computation time. It may be necessary to reconstruct the grids for a more satisfactory result after

obtaining the first solution. This reconstruction procedure involves a change of either resolution (the size

of the grids) or the spacing (the distance between grid points) functins. However, this proess is tedious

and very time consuming; this is especially true for a complex geometry.
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To bridge the gap between the CAD/CAM systems and the grid generation systems, it is necessary to

establish communicatin paths so that the geometries and grids defined within these two systems can be

linked with each other. For most of the CAD/CAM systems, the Initial Graphics Exchange Spe_'ificatin

(IGES) is a widely accepted standard for geometry exchange. Most CAD/CAM systems support the

IGES format as an Input/Output of resulting geometries. And for the grid generation part, there are many

approaches for representing sculptured geometry/grid, such as the Bezier curve/surface, parametric
cubic curve/surface, Hermit representation, Transfinite Interpolation (also referred as TFI) .... and so on.

Among these representations, the Non Uniform Rational BSpline (NURBS) has been widely utilized in

many applications. NURBS is getting popular because it has a powerful features, such as the local

control property, variation diminishing and convex hull, .. etc. Also, the geometry tool kits, like the

curve/surface interpolation, data reduction, degree elevation, knot insertion and splitting are all

well-developed. These features make the NURBS very useful not only in the CAD/CAM packages but

also in Grid Generation systems. And what important is -- the IGES file already included the NURBS

curve (entity 126) and surface (entity 128). Therefore, ff a software package can read in an IGES file,

and convert any Non NURBS entities to NURBS curve/surface, then the geometry defined in IGES can

be utilized by grid system. Or in the other way, if the geometry/grid defined in grid system is

represented as NURBS, then it is possible to output the grids to an IGES format with entity 126 and
128. If this can be done, then the geometry and grid are communitable, and the construction time for the

pre-posser can be reduced. CAGI is aimed at this goal. It is a package with NURBS database. It can read

in the IGES file and transforms the geometrical definitions to NURBS, or define the grids with NURBS

representation and output the grid with IGES data.

What is CA GI ?

CAGI stand for Computer-Aided Grid Interface. It is a grid genration package with NURBS database.

The Graphic User Interface (GUI) is made by utilizing the FORM Library, and the SGI Graphics

L/brary is utilized for the graphic display. CAGI can either read the standard IGES format or generate

grids form NURBS definition. The representation of NURBS has been extended from curve (1D),

surface (2D) to volume (3D) definition. This project is sponsored by the NASA Marshall space flight

center. Any suggestion or request can be forwarded to the technical monitors, Mr. Ted Benjamin and
Robert Williams.

Currenfly,CAGI contains several modules:

0 Geometry Generation Module

This module allows the user to generate the grids from NURBS definition. The user can

create points, curves, surfaces or volume by the different NURBS options.

O Geometry Manipulation Module

This Module allows the user to manipulate the selected geometric entities (either curves,

surfaces or volume). The user is allowed to change the orentation, the resolutions, or even

the distribution of the selected entity easily by clicking the proper button or slider bars. Since

CAGI transforms the geometry to the NURBS definition, this module takes advantage of

NURBS properties/tools such as knot insertion, degree elevation, data reduction and even the

alternation of the location of control polygon and weight to change the shape of the

geometry.





0 Volume Grid Module & Geometry Viewing

These two modules are temperafly not fully function. They are under construction.

Contact Information

General Contact:

Dr. Bharat K. Soni

P. O. Box9627

Mississippi State, MS 39762-9627

325-2647 or (601)325-8278
i bsoni@ erc.msstate.edu

Technical Problem or CAGI Question:

Dr. Tzu-Yi (Robert) Yu
P. O. Box 9627

Mississippi State, MS 39762-9627

Te1:(601)325-2467, Fax:(601)325-7692

_yu@erc.msstate.edu

CAGI request:

Mr. Ted Benjamin

ED32, NASA Marshall Space Flight Center

Huntsville, AL 35812

Te1:(205)544-9402, Fax:(205)544-1215

_tedb @ tyrell.msfc.nasa.gov

Questions or comments about this document:

_ crystal@ etc.msstate,edu

Organization of the CAGI Manual

In this manual, you will find descriptions of the commands in CAGI and instructions on how to

use them. You will also find tutorials that give you step-by-step instructions on some examples.





Themanual is arranged in the following manner:
0 CAGI Basics introduces the CAGI Interface.

0 CAGI Men Buttons describes the CAGI options and commands.

0 Tutorials�Demos help you get started learning the functions of CAGI.

0 Reference allows you to find the information you need more easily.

Navigating the CAGI Manual

In addition to hyperlinked texts, there are navigation buttons at the end of each document. The

navigation buttons are described as follows:

_ takes you to the Table of Contents

R takes you to Index

__ takes you to the previous file in linear sections of the document; takes you to the

parent file in non-linear sections

takes you to the beginning of the Manual

_ takes you to the next file in in linear sections of the document; takes you to the

first child in non-linear sections
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GENIE ++- General Grid Generation System

INTRODUCTION

NASA maintains an applications-oriented computational fluid dynamics (CFD) effort complemen-

tary to and in support of aerodynamic-propulsion design and test activities. This is especially true

at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket

engines. Numerical grid generation plays a significant role in fluid flow simulation utilizing CFD.

The first step in a CFD simulation is the generation of an appropriate grid.. The geometry of interest

must be accurately modeled and the points distributed in an efficient and smooth manner. These

constraints often cause this step to be often one of the most time--consuming. Several grid generation

codes of increasing capability have developed. During 1983-85 SVTGD2D-3D was developed and

operated in a batch mode. As graphics workstations progressed in power and capability, IN-

GRID2D-3D was developed during 1985-88 to use available interactive techniques to speed the

process. As an outgrowth of these programs and other research activities Genie was developed dur-

ing 1988-91 as a semi interactive grid generation package. From1992 to the present Genie ++ has

been under development as a completely interactive grid generation system. Genie ++ has demon-

strated the capability to generate grids about very complex configurations of interest to MSFC with

complete geometric fidelity. Thus, current development efforts concerning Genie ++ deal with tech-

niques to decrease the labor time required and to enhance the fidelity of the geometry representation.

The transfer of information directly from a CAD system to the grid generation system has the poten-

tial to facilitate the fulfillment of these two goals. Therefore the computer aided grid interface

(CAGI) has been developed and the Initial Graphics Exchange Specification (IGES) translator im-

plemented in Genie ++. The IGES translator is fully compatable with the NASA-IGES standard and

allows direct transfer of information from a CAD system to Genie ++ . The development of CAGI

has been supported by NASA MSFC and complex configurations of current NASA interest have

been used as test cases to validate the grid generation system.





Genie ++ PROGRAM -DESCRIPTION

The computer code GENIE ++ is a continuously evolving grid system containing a multitude of prov-

en geometry/grid techniques. The generation process in GENIE ++ follows earlier versions. The pro-

cess uses several techniques either separately or in combination to quickly and economically gener-

ate sculptured/analytical geometry descriptions and grids for arbitrary geometries. The

computational mesh is formed by using an appropriate algebraic method. Grid clustering is accom-

plished with either exponential or hyperbolic tangent routines which allow the user to specify a de-

sired point distribution. Grid smoothing can be accomplished by using an elliptic solver with proper

forcing functions. B-spline and Non-Uniform Rational B-splines (NURBS) algorithms are used

for surface definition and redistribution. The built-in sculptured/analytical geometry definition

with desired distribution of points, automatic Bezier curve/surface generation for interior bound-

aries/surfaces, surface redistribution or remapping based on NURBS weighted Lagrange/Hermite

transfinite interpolation methods, interactive geometry/grid manipulation modules, and on-line

graphical visualization of the generation process are salient features of this system, which result in

a significant time savings for a given geometry/grid application.

One recently developed capability has proven to be very useful in several applications. Even when

geometry data is obtained directly from a CAD system, it is generally not in a form suitable for gen-

eration. Often patches defining portions of a surface do not match with their background surface.

Also surface/surface intersections are not defined, and sometimes do not fully intersect. In this case

an extrapolation must be performed. This is performed automatically when a surface/surface inter-

section is performed in Genie ++. Once this intersection curve is determined the job is still not com-

plete. The intersection curve must conform to a series of I, J or K constant lines in the computational

space. Experience has indicated that the typical practice of breaking a surface into a larger number





Original Wing Fairing

Wing Fairing After Intersection

Figure lb. Fuselage Patch Before & After Blending

Figure 2a. Original IGES Data for Veins





Figure 2b. Selected Surfaces of Veined Elbow Volume Grid
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